TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 1 OF 17 CB&I Services, Inc. Document Title: Tacoma LNG Siting Study Report Document Number 186512-000-SE-RP-00001 CB&I Contract No: 186512 CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Revision Descriptions Rev Date Originator Checker Issued for Estimate A 13 Sept 2013 TAM MES Issued for Review B 8 July 2015 GCB MES Issued for Approval C 16 July 2015 GCB MES Approver "THIS DOCUMENT IS THE PROPERTY OF CHICAGO BRIDGE & IRON COMPANY (CB&I). IT MAY CONTAIN INFORMATION DESCRIBING TECHNOLOGY OWNED BY CB&I AND DEEMED TO BE COMMERCIALLY SENSITIVE. IT IS TO BE USED ONLY IN CONNECTION WITH WORK PERFORMED BY CB&I. REPRODUCTION IN WHOLE OR IN PART FOR ANY PURPOSE OTHER THAN WORK PERFORMED BY CB&I IS FORBIDDEN EXCEPT BY EXPRESS WRITTEN PERMISSION OF CB&I. IT IS TO BE SAFEGUARDED AGAINST BOTH DELIBERATE AND INADVERTENT DISCLOSURE TO ANY THIRD PARTY." TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 2 OF 17 TABLE OF CONTENTS Contents 1.0 2.0 Page EXECUTIVE SUMMARY .......................................................................................................................... 4 INTRODUCTION....................................................................................................................................... 5 2.1 Purpose.......................................................................................................................................... 5 2.2 Scope ............................................................................................................................................. 5 3.0 REFERENCES.......................................................................................................................................... 5 3.1 Codes and Standards................................................................................................................... 5 3.2 Project Documents ....................................................................................................................... 5 3.3 Other .............................................................................................................................................. 6 4.0 DEFINITIONS............................................................................................................................................ 6 5.0 DESIGN SPILL SCENARIO CALCULATIONS........................................................................................ 6 5.1 Identification of Piping Spill Scenarios ...................................................................................... 6 5.2 Identification of Equipment Spill Scenarios .............................................................................. 7 5.3 Spill Flow Rate Calculations........................................................................................................ 7 6.0 IMPOUNDMENT SIZING CALCULATIONS............................................................................................. 8 6.1 LNG Tank Impoundment Sizing .................................................................................................. 8 6.2 Process Spill Impoundment Sizing............................................................................................. 8 7.0 RADIANT HEAT FLUX CALCULATIONS ............................................................................................. 11 7.1 Requirements .............................................................................................................................. 11 7.2 Environmental Parameters ........................................................................................................ 11 7.3 Radiant Heat Flux – LNG Tank Fire........................................................................................... 11 7.4 Radiant Heat Flux – Process & Hylebos Spill Sumps............................................................. 12 7.5 Radiant Heat Flux – TOTE Bunkering Spill Sumps ................................................................. 13 8.0 VAPOR DISPERSION CALCULATIONS............................................................................................... 13 8.1 Requirements .............................................................................................................................. 13 8.2 Environmental Parameters ........................................................................................................ 13 8.3 Spill Scenario Assessment for Vapor Dispersion................................................................... 14 8.4 Vapor & Non-Cryogenic Liquid Releases................................................................................. 14 8.5 Liquid Releases........................................................................................................................... 15 9.0 VAPOR CLOUD EXPLOSION................................................................................................................ 16 9.1 Requirements .............................................................................................................................. 16 9.2 Scenario Assessment for VCE .................................................................................................. 16 10.0 CONCLUSIONS...................................................................................................................................... 17 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 3 OF 17 APPENDICES APPENDIX A PIPE INVENTORY & FAILURE RATE CALCULATIONS APPENDIX B PIPE FAILURE SCENARIO SUMMARY APPENDIX C INDEX OF EQUIPMENT CONTAINING HAZARDOUS MATERIALS APPENDIX D LIMITED SOURCE SPILL RATE CALCULATIONS APPENDIX E PHAST ANALYSIS RESULTS: VAPOR DISPERSION PLOTS APPENDIX F LNG TANK CONTAINMENT, SPILL IMPOUNDMENT & TRENCH SIZING CALCULATIONS APPENDIX G SPILL CONTAINMENT PLAN DRAWINGS APPENDIX H FIRE THERMAL RADIATION CALCULATIONS & EXCLUSION ZONE DRAWING APPENDIX I LNG RELEASES – SPILL SCENARIO CASE SUMMARY & LOCATIONS APPENDIX J GEXCON SUMMARY REPORT FOR CRYOGENIC LIQUID SPILLS, WITH VAPOR DISPERSION PLOTS APPENDIX K PHAST ANALYSIS RESULTS FOR VAPOR PORTION OF LNG RELEASES: VAPOR DISPERSION PLOTS APPENDIX L VAPOR CLOUD EXPLOSION CALCULATIONS AND PHAST ANALYSIS PLOTS APPENDIX M CLIMATE DATA TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 1.0 REVISION: C 4 OF 17 EXECUTIVE SUMMARY The Tacoma LNG Project is to be located in the Port of Tacoma in Tacoma, Washington and is an LNG facility subject to the siting requirements of 49 CFR 193 and by reference NFPA 59A (2001). The siting requirements cover the methods and means to determine design spills, spill conveyance, impoundment sizing, and thermal radiation exclusion zones from ignition of design spills into impoundments such that a public hazard does not extend beyond the bounds of the property. Additionally the siting requirements address flammable vapor dispersion exclusion distances to preclude a flammable vapor mixture from a credible design spill reaching a property line that can be built upon. Calculations supporting the siting requirements have been produced for the Tacoma LNG Project. Design spills have been determined in accordance with 49 CFR 193, and impoundment systems have been sized accordingly. Thermal exclusion zones from impoundment fires have been assessed and are in accordance with 49 CFR 193. Vapor dispersion analysis has been performed for credible spill scenarios identified within the facility. The resulting flammable vapor exclusion distances do not extend beyond a property line that can be built upon. Vapor cloud explosion analysis, as currently required by PHMSA, has been performed for credible design spills of reactive vapors into potentially confined and/or congested areas of the facility. Damaging overpressure levels of 1 psi were determined to remain within the property boundary and off of occupied buildings within the facility. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 2.0 INTRODUCTION 2.1 Purpose REVISION: C 5 OF 17 An LNG liquefaction facility is proposed to be constructed in the Port of Tacoma in Tacoma, WA. LNG will be liquefied onsite, stored, and subsequently bunkered on ships, loaded onto trucks, or regasified. The facility is to be built in accordance with 49 CFR 193 and NFPA 59A (2001). This report documents the studies and calculations performed to determine safe plant layout and siting requirements for the Tacoma LNG facility as related to hazardous spill control and containment. This includes the calculations and results for impoundment sizing, radiant heat flux exclusion distances, vapor dispersion distances, and Vapor Cloud Explosion (VCE) analysis for the Tacoma LNG Facility. Design spills and impoundment sizing are determined per the requirements of NFPA 59A (2001) as referenced by 49 CFR 193 and interpreted in the Pipeline & Hazardous Materials Safety Administration (PHMSA) FAQ on LNG Facilities. Radiant heat flux and vapor dispersion calculations are per the requirements of NFPA 59A (2001) and 49 CFR 193. VCE calculations are per the interpretations documented in the PHMSA FAQ on LNG Facilities. 2.2 Scope Per Federal Regulations and industry standards, ensuring adequate control and containment of hazardous spills requires the following: • Identifying design spill scenarios • Determining design spill flow rates • Sizing spill impoundments • Modeling vapor dispersion of flammable material design spills • Modeling thermal radiation heat flux from ignited spills • Modeling vapor cloud explosion of flammable material design spills This report describes the basis and results for each analysis undertaken to fulfill the points above. 3.0 REFERENCES 3.1 Codes and Standards 3.2 49 CFR Part 193 Liquefied Natural Gas Facilities: Federal Safety Standards NFPA 59A (2001 ed.) Standard for the Production, Storage and Handling of Liquefied Natural Gas (LNG) Project Documents 186512-000-PI-01-000001 Rev. P Overall Plot Plan Main LNG Plant 186512-000-CV-01-000003 Rev. D Site Plan – Main LNG Plant with Blair Dock and Hylebos Dock 186512-000-PR-01-000101 Rev. B Process Flow Diagram – Liquefaction 186512-000-PR-01-000102 Rev. B Process Flow Diagram – LNG Loading & Vaporization 186512-000-PR-01-000103 Rev. B Heat & Material Balance – Liquefaction & Loading 186512-000-PR-01-000104 Rev. B Heat & Material Balance – Holding & Vaporization TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 186512-000-SE-01-000011 3.3 4.0 5.0 Rev. D REVISION: C 6 OF 17 Thermal Exclusion Zone Plan – Main LNG Plant with Blair Dock (TOTE) and Hylebos Dock Other PHMSA Website – LNG Facility Siting LNG Facility Siting Application Requirements: Frequently Asked Questions http://primis.phmsa.dot.gov/lng/faqs.htm PHMSA Website – LNG Facility Siting LNG Facility Siting: Documents Nominal Failure Rate Table 1; February 11, 2015 http://primis.phmsa.dot.gov/lng/documents.htm DEFINITIONS Term/Acronym Definition NG Natural Gas LNG Liquefied Natural Gas MR Mixed Refrigerant FG Fuel Gas NFPA National Fire Protection Association PHMSA U.S. DOT Pipeline and Hazardous Materials Safety Administration Exclusion Zone Areas within which certain activities or building construction is limited. Exclusion zones are centered on a hazardous spill or spill impoundment, and pertain to both fire radiant heat flux limits and flammable vapor cloud concentration limits. DESIGN SPILL SCENARIO CALCULATIONS Design spills within the plant have been assessed according to the requirements of 49 CFR 193.2051, NFPA 59A (2001) and the interpretations set forth by PHMSA (see References). As the LNG storage tank is full containment there is no tank design spill criteria. Per Table 2.2.3.5 of NFPA 59A (2001), design spill scenarios for vaporization, process or LNG transfer areas must be assessed and impoundment exclusions zones analyzed. The design spill description given in NFPA 59A (2001) is stated as, “The flow from any single accidental leakage source,” which is applied over a ten minute duration. PHMSA has further defined what failure types must be assessed and what probabilities must be applied to determine the validity of each design spill scenario. 5.1 Identification of Piping Spill Scenarios Per PHMSA direction, a Piping Inventory Table was developed for the plant and is included in Appendix A. The Table lists every line in the plant 2 inches in diameter or larger that contains hazardous/flammable fluids. Each of these lines was assessed against multiple failure scenarios defined in the Nominal Failure Rate Table, provided by PHMSA. These line failure criteria are transcribed in Table 1. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 7 OF 17 Failures per year of operation, per meter of pipe Min. Pipe Size (in) Pipe Size Range NPS 2 6 12 20 2" ≤ d < 6" 6" ≤ d < 12" 12" ≤ d < 20" 20" ≤ d < 40" Piping (P2): Piping (P1): Release from Catastrophic hole w/ Rupture Effective 5.0E-07 2.0E-07 7.0E-08 2.0E-08 4.0E-07 2.0E-07 1.0E-07 Piping (P3): Release from hole w/ Effective Piping (P4): Release from hole w/ Effective 4.0E-07 2.0E-07 2.0E-06 7.0E-07 5.0E-07 4.0E-07 Table 1: Line Failure Scenario and Probabilities (from PHMSA Nominal Failure Rate Table). Probabilities for each failure scenario are calculated from the diameter and length of the line section. -5 When the failure probability exceeds 3 x 10 failures/year, the threshold defined by PHMSA, the failure is considered credible and requires further analysis. The failure probability calculations are contained in Appendix A, and credible line failures identified by this method are highlighted and denoted on the right hand side of the table. Credible failure scenarios requiring analysis are summarized in Appendix B. Further discussion on the election of failure scenarios to include in Appendix B is provided in section 8.3. 5.2 Identification of Equipment Spill Scenarios Per PHMSA direction, an Index of Equipment Containing Hazardous Materials was developed for the plant and is included in Appendix C. The Index lists all major equipment in the plant that contains hazardous or flammable fluids, including vessels, pumps & compressors, heat exchangers, and hoses. The Index also includes the estimated quantity of liquid held in each piece of equipment during normal operation. Spills from the individual pieces of equipment were assessed against the total spill volumes in the line failure scenarios listed in Appendix B. The quantities spilled in the line failure scenarios were significantly larger than the quantity of liquid held in the equipment listed. This generally precluded the need to analyze equipment failures, as the resulting exclusion zones are much smaller than those produced by line failure scenarios. The exception to this approach is the MRL Condensate Separator (V-204). The piping analysis did not produce large credible MR liquid line failure scenarios, so the MRL Condensate Separator vessel was included in the vapor dispersion study set. Per the Nominal Failure Rate Table, a catastrophic rupture scenario and 0.4 inch diameter hole release were assessed. Failures of the refrigerant storage vessels (V-205, V-206, V-207 and V-208) and the heavies storage vessel (V-802) were not considered for design spill determination as these vessels will be mounded and contained inside a concrete vault. 5.3 Spill Flow Rate Calculations For each credible failure scenario listed in Appendix B, an analysis was performed to determine the design spill flow rate. Where more than one credible scenario was identified for a single line, the most conservative case was selected. The resulting spill mass flow rates for each case are summarized in Appendix B. Spill flow rates were determined by considering the limitations of pumping equipment and the dynamics of the release scenario. Where the leak supply is being fed by a pumped source, such as cases involving the in-tank LNG pumps, the flow rate was pushed to the run-out flow rate of the operating pump(s). PHMSA requires the consideration of pump run-out in defining spill scenarios. Calculations of spill flow rates fed by a pumped source are included as Appendix D TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 8 OF 17 Where the leak is being fed by a plenum or where the leak size restricts flow to less than the full source supply, the flow rate was determined using Det Norske Veritas (DNV) Phast software, Version 7.01. Summary plots for each case are included in Appendix E. 6.0 IMPOUNDMENT SIZING CALCULATIONS 6.1 LNG Tank Impoundment Sizing The Tacoma LNG Facility includes one (1) full containment LNG Storage Tank of 8,000,000 gallons capacity. The inner tank has a maximum liquid volume of 8,430,000 gallons at a design liquid level of 86’-3”. Secondary containment for the tank is provided by a full containment concrete outer tank. Per 49 CFR 193.2181, each impounding system serving a single LNG storage tank must have a minimum liquid impoundment capacity of 110 percent of the LNG Storage Tank’s maximum liquid capacity. The outer tank serves as the impoundment, and has sufficient capacity to meet the requirement listed above. Verifying calculations are included in Appendix F. The total impoundment volume, less displacement allowances, is 10,770,000 gallons, which provides more than 27% excess capacity beyond the LNG Storage Tank’s maximum liquid capacity. 6.2 Process Spill Impoundment Sizing Credible LNG spills within the facility are directed to below grade open top concrete spill trenches, which convey spills to containments consisting of below grade open top concrete sumps. Impounding areas, provided to serve vaporization, process, or LNG transfer areas shall have a minimum volumetric capacity equal to the greatest volume of LNG or flammable liquid that can be discharged into the area during a 10 minute period from any single accidental leakage source. The following impounding sumps are provided and sized to accommodate these spills. 6.2.1 Process Area Spill Sump For full containment LNG containers with over-the-top fill and no penetrations below the liquid level a design spill scenario is the largest flow from any single line that could be pumped with the container withdrawal pump(s) at rated capacity. The spill duration is considered to be 10 minutes based on a facility with surveillance and shutdown capabilities upon detection of a spill. Three LNG in-tank pumps are provided for the facility and may be operated simultaneously under future sendout scenarios, therefore all three pumps’ capacities are considered. PHMSA direction requires the consideration of pump run out in process design spill calculations. A credible failure scenario exists for the sendout header from the tank (line 10”-LNG-4007) that can potentially spill the run out flow from all three pumps. Therefore, the spill impoundment sump has been sized for this capacity. The process area spill sump serves spills emanating from the LNG tank platform, the liquefaction area, the ex-tank sendout pump area, the vaporizer area and the truck loading station. • Pump Runout Capacity • Spill Duration • No. Pumps Running • Spill Volume 1,630 10 gpm minutes 3 48,900 gallons PHMSA direction also requires the consideration of pipe de-inventory when determining spill quantity. The Process Area Spill Sump is sized to accommodate the spill volume above as well as de-inventory of the LNG supply header (line 10”-LNG-4007), the TOTE dock supply header (line 10”LNG-4017) and the Hylebos dock supply header (line 8”-LNG-4023). Spill capacity and volume TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 9 OF 17 calculations are included as Appendix F, and the resulting cylindrical impoundment sump has the following dimensions: 6.2.2 • Diameter • Gross Depth • Usable Depth • Usable Volume 22.25 ft 20.5 ft 19 ft 55,300 gallons Hylebos Loading Spill Sump (Future) LNG spills emanating at the Hylebos jetty are collected in a concrete curbed area under the arms and piping which gravity drains to a concrete trench that runs the length of the jetty back ashore. The trench is directed to the Hylebos Loading Sump. The spill duration is considered to be 10 minutes based on a facility with surveillance and shutdown capabilities upon detection of a spill. Two LNG in-tank pumps operate during marine loading operations. • Pump Runout Capacity • Spill Duration • No. Pumps Running • Spill Volume 1,630 10 gpm minutes 2 32,600 gallons PHMSA direction also requires the consideration of pipe de-inventory when determining spill quantity. The Hylebos Loading Sump is sized to accommodate the spill volume above as well as deinventory of the LNG supply header (line 10”-LNG-4007), the TOTE dock supply header (line 10”LNG-4017) and the Hylebos dock supply header (line 8”-LNG-4023). Spill capacity and volume calculations are included as Appendix F, and the resulting cylindrical impoundment sump has the following dimensions: 6.2.3 6.2.3.1 • Diameter • Gross Depth • Usable Depth • Usable Volume 22.25 ft 15 ft 13.5 ft 55,300 gallons TOTE Bunkering - Facility and Dock Side Spill Sumps The supply line from the facility to the TOTE bunkering dock runs from above ground pipe rack into a transition pit, through an underground pipeline into a second transition pit, and onto above ground sleepers to the bunkering dock. The transition pits serve as LNG impoundments on either end of the underground supply line. On the facility side, the supply line to TOTE runs on an E-W pipe rack. The area underneath is paved to drain away spills to a trench that runs to the Process Area Spill Sump. The facility side TOTE spill sump (i.e. transition pit) only serves the piping in the pit itself. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 10 OF 17 On the TOTE dock side, the area underneath the supply line and loading arm is paved to drain away spills to a trench that runs to the TOTE dock Spill Sump. The TOTE dock spill sump (i.e. transition pit) serves as impoundment for all spills at the dock side facility. The spill duration is considered to be 10 minutes based on a facility with surveillance and shutdown capabilities upon detection of a spill. The mass spill rate is the same for both impoundments, and is based on the credible leak scenario of a 1/3 diameter hole (3.33”) in the supply line. • Mass Spill Rate • Spill Duration • Total Spill Mass • Total Spill Volume 655,710 10 110,952 30,380 lb/hr minutes lbs gallons PHMSA direction also requires the consideration of pipe de-inventory when determining spill quantity. The TOTE Bunkering Spill Sumps are sized to accommodate the spill volume above as well as de-inventory of the LNG supply header (line 10”-LNG-4007), the TOTE dock supply header (line 10”-LNG-4017), the TOTE dock-side line (line 10”-LNG-4062) and the Hylebos dock supply header (line 8”-LNG-4023). This assumes a break at a low point in the spill sump that would allow gravity drainage of all these lines. Spill capacity and volume calculations are included as Appendix F, and the resulting impoundment has the following dimensions: 6.2.3.2 • Length 18.86 ft • Width 14.6 ft • Gross Depth 20 ft • Usable Depth 18.5 ft • Usable Volume 38,100 gallons Underground Pipeline As described above, LNG is supplied from the facility to the TOTE dock via an underground pipeline. All underground process piping between the TOTE dock and the LNG facility are full containment vacuum jacketed pipe, and are run inside in a nitrogen purged tunnel encasement. Should a leak occur in the inner pipe, the fluid will be contained by the outer pipe jacket and the system will have a relief path back to the LNG storage tank. Due to this configuration of containment, the underground lines are not included in the assessment of credible spill scenarios for atmospheric vapor dispersion. 6.2.4 Trenches & Curbing Any liquid spills in the process area or along the pipe racks will fall into curbed containment areas, and will be conveyed to the spill sumps by a below grade open top concrete transmission trenches. The preliminary layout of spill containment and conveyance is shown on Spill Containment Plan Drawings 186512-000-CV-08-000101 through 000103, which are included in Appendix G. Trenches have been sized to convey the maximum design liquid spill rates for the areas they serve. The trenches will be 2 ft wide with a slope towards the respective sump of 0.2% (2 ft fall in 1,000 ft run). Trench depths vary, and are stepped to prevent backflow of spills into unaffected sections of the trench system. Calculations for trench dimensions and slope can be found in Appendix F. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 7.0 REVISION: C 11 OF 17 RADIANT HEAT FLUX CALCULATIONS The following sections outline the exclusion zone requirements for an impoundment fire, a description of the analysis conducted, and an assessment of the results. 7.1 Requirements Per 49 CFR 193.2057, each LNG container must have an exclusion zone in accordance with section 2.2.3.2 of NFPA 59A (2001). Per Section 2.2.3.2 of NFPA 59A (2001), the exclusion zones are based on thermal radiation flux limits for an impoundment fire scenario. The three radiant heat flux limits are listed in Table 2. Thermal Radiation Flux Limit (Btu/hr/ft2) Exposure Description 1,600 The nearest point located outside the owner’s property line that, at the time of plant siting, is used for outdoor assembly by groups of 50 or more persons for a fire over an impounding area at full volume containing LNG 3,000 The nearest point on the building or structure outside the owner’s property line that is in existence at the time of plant siting and used for occupancies classified by NFPA 101, Life Safety Code, as assembly, educational, health care, detention and correction, or residential for a fire in an impounding area at full volume containing LNG 10,000 At a property line that can be built upon for a fire in an impounding area at full volume containing LNG Table 2: Radiant Heat Flux Limits to Property Lines and Occupancies 7.2 Environmental Parameters In accordance with 49 CFR 193.2057(b) & (c), radiant heat flux distances are calculated using: i) the wind speed producing the maximum exclusion distances, except for wind speeds that occur less than 5% of the time based on recorded data for the area; and ii) the ambient temperature and relative humidity that produce the maximum exclusion distances, except for values that occur less than 5% of the time based on recorded data for the area. Meteorological data from ASHRAE Handbook – Fundamentals 2013 for Tacoma/McChord AFB (#742060) is used for the calculations in this report. The data sheet and a summary of climatic data derivations are provided in Appendix M. The following is a summary of weather conditions to be used for the radiant heat flux analysis: • Wind Speed 15.6 MPH down to 4.5 MPH • Ambient Temperature 31.95 •F • Relative Humidity 54.7% 7.3 Radiant Heat Flux – LNG Tank Fire The LNG tank at the Tacoma LNG facility is a full concrete containment tank with over-the-top fill and no penetrations below the liquid level. The secondary containment system is the outer concrete tank. For radiant heat flux distance calculations, the outer roof is considered to have failed with a tank top fire having the same radius as the inner diameter of the concrete. LNGFIRE3 is recognized by 49 CFR 193 and NPFA 59A as a computer model for calculation of the radiation heat flux limits TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 12 OF 17 from LNG fires described in NFPA 59A. LNGFIRE3 was run with the meteorological data presented in section 7.2 and the following tank parameters: • LNG Tank Concrete Inner Dia 135.5 FT • LNG Tank Height 118.5 FT The output from LNGFIRE3 is included in Appendix H. Maximum radiant heat flux limits occur at the maximum wind speed at all flux levels. The radiant heat flux limit isopleth distance for the LNG storage tank fire at a target elevation of 0 ft (grade) is: Radiant Heat Flux Limit (BTU/hr-ft2) Distance from Center of Pool (ft) 1,600 550.3 The radiant heat flux exclusion zone is overlaid on the facility plot plan on drawing 186512-000-SE01-000011 Rev D included in Appendix H, which shows that the radiant heat flux limits meet the requirements of NFPA 59A (2001). 7.4 Radiant Heat Flux – Process & Hylebos Spill Sumps The Process Area Spill Sump and the Hylebos Loading Spill Sumps are described in section 6.2.1 and 6.2.2 respectively. Both impoundments have the same plan geometry, therefore the radiant heat flux isopleths are the same. For radiant heat flux distance calculations, the sumps are conservatively considered to be filled with product and have caught fire. LNGFIRE3 was run with the meteorological data presented in section 7.2 and the following parameters: • Impoundment Diameter 22.25 FT • Height of Flame Base 0 FT The output from LNGFIRE3 is included in Appendix H. Maximum radiant heat flux limits occur at the maximum wind speed at all flux levels. The radiant heat flux limit isopleth distances for the sump fire at a target elevation of 0 ft (grade) are: Radiant Heat Flux Limit (BTU/hr-ft2) Distance from Center of Pool (ft) 1,600 125.7 3,000 105 10,000 75.3 The radiant heat flux exclusion zone is overlaid on the facility plot plan on drawing 186512-000-SE01-000011 Rev D included in Appendix H, which shows that the radiant heat flux limits meet the requirements of NFPA 59A (2001). Because of its proximity to the outer tank wall, the heat flux from the Process Sump was also 2 analyzed at varying elevations to ensure that the 10,000 Btu/hr-ft limit is not exceeded at the concrete surface of the tank. The output from LNGFIRE3 is included as Appendix H. The maximum 2 reach of the 10,000 Btu/hr-ft limit occurred at an elevation of 12’ and a distance from the center of the pool of 78.2 ft. This is the exclusion zone shown on drawing 186512-000-SE-01-000011 in Appendix H. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 13 OF 17 7.5 Radiant Heat Flux – TOTE Bunkering Spill Sumps The TOTE Bunkering Spill Sumps are described in section 6.2.3. Both impoundments have the same plan geometry, therefore the radiant heat flux isopleths are the same. For radiant heat flux distance calculations, the sumps are conservatively considered to be filled with product and to have caught fire. LNGFIRE3 was run with the meteorological data presented in section 7.2 and the following parameters: • Impoundment Length 18.85 FT • Impoundment Width 14.6 FT • Height of Flame Base 0 FT The output from LNGFIRE3 is included in Appendix H. Maximum radiant heat flux limits occur at the maximum wind speed at all flux levels. The radiant heat flux limit isopleth distances for the sump fire at a target elevation of 0 ft (grade) are: Radiant Heat Flux Limit 2 (BTU/hr-ft ) Distance from Center of Pool (ft) 1,600 106.7 3,000 91 10,000 68.8 The radiant heat flux exclusion zone is overlaid on the facility plot plan on drawing 186512-000-SE01-000011 Rev D included in Appendix H, which shows that the radiant heat flux limits meet the requirements of NFPA 59A (2001). 8.0 VAPOR DISPERSION CALCULATIONS The following sections outline the exclusion zone requirements for flammable vapor dispersion from the credible spill scenarios described above, a description of the analysis conducted, and an assessment of the results. 8.1 Requirements Per 49 CFR 193.2059, each impounding system serving an LNG container or transfer system must have a flammable vapor dispersion exclusion zone as defined by reference to NFPA 59A (2001), sections 2.2.3.3 and 2.2.3.4. Exceptions to NFPA 59A (2001) are listed in subparts (a), (b) & (c), and include specific requirements for allowable analytical tools, dispersion modeling parameters, and design spill determination. Per Section 2.2.3.3 of NFPA 59A (2001), an LNG impoundment containing a design spill must be located such that an average concentration of methane in air of 50% of the Lower Flammability Limit (LFL) does not extend beyond the property line that can be built upon. 8.2 Environmental Parameters Vapor dispersion modeling uses the following parameters specified in NFPA 59A and 49 CFR 193, as well as the annual average temperature taken from the ASHRAE meteorological data sheet for Tacoma/McChord AFB (#742060): • Stability Class F • Wind Speed 4.5 MPH (2.01 m/s) TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C • Average Ambient Temperature 50.9 •F • Relative Humidity 50% • Surface Roughness 0.03 m 14 OF 17 The data sheet and a summary of climatic data derivations are provided in Appendix M. 8.3 Spill Scenario Assessment for Vapor Dispersion All credible spill scenarios are identified in Appendix A. The modeling approach for each scenario was assessed based on similarity to other failure scenarios, type of fluid leak, and the necessity for spill conveyance / impoundment. The method of assessment for each spill scenario is recorded in the “Analysis by” column in Appendix A. Where process conditions and fluid for a spill are similar to another more severe spill scenario, the lesser case is covered by association. Severity is determined based on hole size and location, where larger holes and closer proximity to the property line increase severity. The more severe case is modeled for vapor dispersion and the results (flammable vapor cloud footprint) are assumed to envelope the less severe spill scenario. In this instance, the “Analysis by” column in Appendix A lists the Item Number of the governing case for reference (e.g. Assoc. to #113). For credible spill scenarios not covered by association and involving vapor releases or non-cryogenic liquids (mixed refrigerant), PHAST version 7.01 software was employed to determine and overlay the downwind distances to the ½ LFL point of a flammable vapor cloud on the plot plan. Version 6.7 of this software package was approved for use under PHMSA Docket No. 2011-0075 for analysis of dispersion from direct releases in any direction, including jetting failures and flashing. The Unified Dispersion Model (UDM) at the core of the program remains unchanged from Version 6.7 to Version 7.01. For these cases, the “Analysis by” column in Appendix A denotes “Phast”. For credible spill scenarios involving cryogenic liquids (LNG) conveyed to open top concrete sumps, FLACS 3D consequence modeling software was employed by GexCon US to determine and overlay the downwind distances to the ½ LFL point of a flammable vapor cloud. This software package was approved for use under PHMSA Docket No. 2011-0101 for determining vapor generation from spills to trenches and impoundments. For these cases, the “Analysis by” column in Appendix A denotes “FLACS”. Spill scenarios involving Normally Not Flowing (NNF) lines such as drains and bypasses were considered to be not credible. The determination of credible leak scenarios using the PHMSA criteria described in section 5.1 inherently considers annual usage; the failure probabilities are couched as “failures per year of operation”. Because these lines are not normally in operation, the probability of failure decreases below the threshold of credible failure when duration is factored in. For these cases, the “Analysis by” column in Appendix A denotes “N/A”. 8.4 Vapor & Non-Cryogenic Liquid Releases For qualifying cases as described in section 8.3 vapor dispersion analysis was performed for the credible spill scenarios using PHAST version 7.01 software to determine and overlay the downwind distances to the ½ LFL point of a flammable vapor cloud on the plot plan. Flammable vapor-gas dispersion distances are determined at the atmospheric conditions stipulated in section 8.2 at an average gas concentration in air equal to 2.5 percent. This represents 50 percent of the lower flammability limit (LFL) of methane in air. For mixed refrigerant spill scenarios, the ½ LFL of the actual mixture has also been assessed. Results of this analysis, including input and output reports and figures, are included in Appendix E. The analysis shows that none of the flammable vapor cloud exclusion zones extended beyond the property line that can be built upon. Certain cases near the southern terminus of the N-S pipe rack th extend beyond the property line and approach, but do not encroach on, 11 Street. To ensure the th flammable vapor cloud does not reach 11 Street. a vapor barrier will be installed in this area to TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C 15 OF 17 diffuse the release jet and facilitate dispersion. A FLACS vapor dispersion analysis of the scenario th was conducted by GexCon US, and shows that the vapor cloud will not reach 11 Street. 8.5 Liquid Releases As described in section 8.3, failure scenarios for cryogenic liquid lines using FLACS software. FLACS analysis is required to accurately (trenches) and impoundment and the physical layout of the plant in evolution. The GexCon summary report which details the scenario included as Appendix J. are analyzed by GexCon US model the spill conveyance determining the vapor cloud inputs, outputs and plots, is To accurately assess the full impact of the credible spill scenarios, certain spills were replicated at multiple locations. The liquid spill criteria and case numbers, as well as plot plans indicating the spill locations are provided in Appendix I. The FLACS analyses show that vapor dispersion exclusion zones for all spill scenarios remain within the property line that can be built upon. Refer to Appendix J for figures showing a plan view of the maximum vapor cloud contours from the liquid design spills. Note that due to the significant computational time required to perform the FLACS analysis, the model is based on an earlier version of the facility layout (Rev. B of Site Plan drawing 186512-000CV-01-000003). While the current facility spill trench layout is slightly different than what has been modeled, the spill sizes remain the same, the overall trench lengths are equivalent, and the trench and impoundment sump sizes have remained identical. Layout modifications are comprised of moving portions of the E-W pipe racks/sleepers and spill trenches north and south, with none of the impoundment system moving west, or closer to the property boundary of greatest interest. As a result, it is clear that the modelled spills will remain within the property boundary that can be built upon even if reflected onto the latest Plot layout. In the TOTE dock area, due to the progression of the Plot Plan the spill trench system shrank significantly by eliminating the N-S run from the dock entrance to the spill impoundment sump. This decreases the vapor cloud footprint as the concrete trench surface area available to vaporize LNG has been reduced. The spill impoundment has moved closer to the TOTE marshalling area. To mitigate this impact, a vapor fence will be installed to sequester the vapor cloud and keep it from reaching the loading ramp for the ship. The results of Scenario 2, which is a larger volumetric spill into an identically sized impoundment, demonstrates the efficacy of the vapor fence in containing the vapor cloud emanating from the sump. The FLACS analyses assumed that the entire spill quantity remained liquid and was directed into the trench to conservatively model the trench and impoundment sump vapor evolution. In reality, vapor formation occurs at the leak point due to flashing, aerosolization and atmospheric heat transfer. To assess this portion of the vapor dispersion, Phast scenarios of the spill cases were modeled. To assess the formation and dispersion of vapor due to flashing and similar effects at the leak point, two Phast cases were used in tandem. The first case modeled a two phase release from a point source at design spill conditions. This case was used to determine the fraction of liquid rain out, and conversely the rate of vapor release. This vapor-only release rate was then modeled in a second Phast scenario to gauge the flammable vapor cloud formation. Summary plots of each case are included in Appendix K. The calculations show that none of the flammable vapor cloud exclusion zones extend beyond the property line that can be built upon. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 9.0 REVISION: C 16 OF 17 VAPOR CLOUD EXPLOSION The following sections outline the criteria for assessing Vapor Cloud Explosion (VCE) from the credible spill scenarios described above, a description of the analysis conducted, and an assessment of the results. 9.1 Requirements Per the PHMSA LNG Facility Siting FAQ, Vapor Cloud Explosion (VCE) analysis should be included in an LNG plant’s hazard evaluation if the hazard is present. Correspondence with PHMSA has indicated that a 1 psi overpressure threshold should be evaluated at the property line that can be built upon and at any occupied buildings in the facility. 9.2 Scenario Assessment for VCE Due to the open site plan and the low reactivity of natural gas (methane), scenarios involving natural gas were not deemed credible for VCE. Medium and high reactivity substances, such as MR and its constituents, have a higher propensity to generate explosive overpressure and were evaluated. VCE scenario plots, fuel reactivity & flammable mass calculations, Phast analysis plots are contained in Appendix L. The plot plan was assessed for areas of congestion and confinement within the flammable vapor cloud of the credible MR release scenarios, with a particular focus on scenarios in proximity to the control building (MRL Condenser Vessel V-204 failure). Two areas were identified that may have the potential to hold up flammable vapor: • Area 1 Liquefaction Area • Area 2 Adjacent to Compressor Building For each case, the plan area of the VCE zone and flammable cloud height were used to determine a maximum hold up volume. A stoichiometric combustion ratio was calculated for the MR vapor and was applied to the volume to determine the mass of flammable fuel to include in the VCE model. The MR vapor composition was also used to determine a composite laminar flame speed and thereby classify the fuel reactivity as Medium. Factors for congestion and confinement were identified based on qualitative assessment of the current facility layout and were assigned to each area. Using the inputs described above, a Baker-Strehlow-Tang explosion model was run using Phast version 7.01. Results show that the 1.0 psi blast overpressure isopleth remains within the property line that can be built upon and does not encroach on occupied buildings in the facility (the control room). Overpressure isopleth plots are included in Appendix L. TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 10.0 REVISION: C 17 OF 17 CONCLUSIONS Analysis has been performed to determine safe plant layout and siting requirements for the Tacoma LNG Facility, including spill impoundment sizing, fire thermal radiation flux modeling, flammable vapor dispersion modeling and flammable Vapor Cloud Explosion (VCE) modeling. Credible design spill scenarios were identified using the PHMSA line assessment procedure and failure rate criteria. These credible scenarios were used to size spill conveyances and impoundments, perform fire thermal radiation modeling and vapor dispersion analysis. Spill impoundment is required for design spills from the liquefaction, ship bunkering and truck loading LNG lines. The process spill sump, TOTE transition pit sumps, and the future Hylebos sump are adequately sized to hold design spills and meet all regulatory requirements. Fire thermal radiation modeling has been completed for all spill sumps. Results show that thermal radiation flux exclusion zones specified by regulation do not extend beyond the property line that can be built upon (public right of way adjacent to the facility). Vapor dispersion analysis was conducted for all credible design spill scenarios. Vapor and noncryogenic liquid releases were analyzed using Phast consequence modeling software. Results show that the ½ LFL vapor exclusion zones do not extend beyond the property line that can be built upon (public right of way adjacent to the facility). Additional passive measures, in the form of vapor fencing, were implemented in the southern section of the facility to ensure no vapor cloud th encroachment onto 11 St. Cryogenic liquid releases (LNG) were analyzed using FLACS 3D computation fluid dynamics modeling software, performed by Gexcon. The FLACS analysis shows that the ½ LFL vapor exclusion zones do not extend beyond the property line that can be built upon (public right of way adjacent to the facility). Subsequent modifications to the site layout will not impact this final conclusion. Additional passive measures, in the form of vapor fencing, will be implemented near the TOTE loading dock impoundment to minimize vapor cloud encroachment into the TOTE marshalling area. Supporting Phast analysis also showed that flash vapor generated at the release point did not extend the exclusion zones beyond the property boundaries or property that cannot be built upon (public right of way adjacent to the facility). Vapor Cloud Explosion (VCE) analysis was conducted for the design spill scenarios involving MR. Phast analysis shows that the 1.0 psi overpressure isopleths do not extend beyond the property line that can be built upon and do not encroach on occupied buildings in the facility (the Control/Admin building). TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX A – PIPE INVENTORY & FAILURE RATE CALCULATIONS A 27-Mar-2015 LA GCB PSE Revision: Date: Made By: Checked: Office: Job Number: Document No. Calculation No. Pipe Inventory & Failure Rate Calculations - Hole Size Evaluation Client: Project: 186512 186512-000-PR-LS-01000 Puget Sound Energy Tacoma LNG FERC Failure Rate Per Year of Operation w.r.t Type of Failure Origin Item # Pipe Segment Line # Fluid Code Destination HMB Case & Stream # Stream Conditions Line Size (in) Plot Plan DWG No. From P&ID # To P&ID # Case Stream # Vapor Frac. Temperature (deg °F) Pressure (psia) Flow Rate (lb/hr) Estimated Line Length Line Volume (ft3) (ft) (m) Piping (P1): Catastrophic Rupture Piping (P2): Release from hole w/ Effective diameter of 1/3 Diameter Piping (P3): Release from hole w/ Effective diameter of 10% Diameter, up to 2" CHECK Hole Size Piping (P4): for Hole Size Analyzed (in) Release from > 3E-5 hole w/ Effective diameter of 1" Analysis By Comments 1 12"-NG-1001-01CB1S01-N- 1001 NG 000-PI-01-000001 Meter Station 186512-000-PR-03-010001 12x8 Reducer 010001 Design 1 1.000 70.0 184.7 44,126 12 20 6.098 15.7 4.27E-07 1.22E-06 2.44E-06 3.05E-06 - - - - 2 8"-NG-1001-01CB1S01-N- 1001 NG 000-PI-01-000001 12x8 Reducer 186512-000-PR-03-010001 F-101 010001 Design 1 1.000 70.0 184.7 44,126 8 20 6.098 7.0 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 3 8"-NG-1002-01CB1S01-N- 1002 NG 000-PI-01-000001 F-101 186512-000-PR-03-010001 C-101 010101 Design 2 1.000 69.4 174.7 44,126 8 290 88.41 101.2 1.77E-05 3.54E-05 N/A 6.19E-05 P2 2.67 Phast - 4 2"-NG-1002-01CB1S01-N- 1002 NG 000-PI-01-000001 Line 8"-1002 186512-000-PR-03-010001 Line 2" to FG 010001 Off-Design N/A 1.000 69.4 174.7 TBD 2 220 67.07 4.8 3.35E-05 N/A N/A 1.34E-04 P1 2.00 Assoc. to #3 - 5 4"-NG-3010-03CB1S01-N- 3010 NG 000-PI-01-000001 Line 3"-3010 186512-000-PR-03-010001 Meter Station 010001 Off-Design 24 1.000 110.5 474.7 4,323 4 50 15.24 4.4 7.62E-06 N/A N/A 3.05E-05 P4 1.00 Assoc. to #81 - 8 2"-NG--03CB1S01-N- X24 NG 000-PI-01-000001 Line 10"-NG 186512-000-PR-03-010001 F-801 080101 Design 74 1.000 64.6 263.7 2,632 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - - 9 8"-NG-1004-01CB1S01-N- 1004 NG 000-PI-01-000001 Line 8"-1002 186512-000-PR-03-010101 Line 8"-1006 010102 Off-Design N/A 1.000 69.4 174.7 NNF 8 50 15.24 17.5 3.05E-06 6.10E-06 N/A 1.07E-05 - - - NNF 10 6"-NG-1005-03CB1S01-PP-1.0 1005 NG 000-PI-01-000001 C-101 186512-000-PR-03-010101 EC-101 010102 Design 3 1.000 258.9 539.7 44,126 6 80 24.39 - - 12 6"-NG-1009-01CB1S01-N- 1009 NG 000-PI-01-000001 FV / EC-101 186512-000-PR-03-010101 8"-1002 / C-101 010101 Off-Design N/A 1.000 94.2 524.7 NNF 6 20 6.098 3.9 1.22E-06 2.44E-06 N/A 4.27E-06 - - - NNF 14 8"-NG-1006-03CB1S01-N- 1006 NG 000-PI-01-000001 8x6 / EC-101 186512-000-PR-03-010102 Pretreatment 012001 Design 4 1.000 94.2 524.7 44,126 8 140 42.68 48.9 8.54E-06 1.71E-05 N/A 2.99E-05 - - - - 15.7 4.88E-06 9.76E-06 N/A 1.71E-05 - - 15 6"-NG-1006-03CB1S01-N- 1006 NG 000-PI-01-000001 EC-101 186512-000-PR-03-010102 8x6 Pretreatment 010102 Design 4 1.000 94.2 524.7 44,126 6 20 6.098 3.9 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 16 6"-NG-1007-03CB1S01-N- 1007 NG 000-PI-01-000001 EC-101 186512-000-PR-03-010102 FV / C-101 010101 Off-Design N/A 1.000 94.2 524.7 NNF 6 100 30.49 19.6 6.10E-06 1.22E-05 N/A 2.13E-05 - - - NNF 18 6"-NG-1010-03CB1S01-N- Pretreatment 186512-000-PR-03-012001 E-201 020001 Design 6 1.000 111.3 484.7 41,876 6 480 146.3 94.2 2.93E-05 5.85E-05 1.02E-04 P2 2.00 Phast - 19 2"-NG-1011-03CB1S01-N- 1011 NG 000-PI-01-000001 6"-1010 186512-000-PR-03-012001 C-101 Startup 012001 Off-Design N/A 1.000 111.3 484.7 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 20 2"-NG-1012-01CB1S01-N- 1012 NG 000-PI-01-000001 HV-Pretreatment 186512-000-PR-03-012001 8"-1002 / C-101 010101 Off-Design N/A 1.000 111.3 484.7 NNF 2 35 10.67 0.8 5.34E-06 N/A N/A 2.13E-05 - - - NNF 1010 NG 000-PI-01-000001 N/A 21 2"-FG--01CB1S01-ET-1.0 X25 FG 000-PI-01-000001 Pretreatment 186512-000-PR-03-012001 U-910 012001 Off-Design N/A 0.000 100.0 70.0 TBD 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - - 22 6"-LNG-2002-03SA0S30-CC-3.0 2002 LNG 000-PI-01-000001 E-201 186512-000-PR-03-020001 V-201 020001 Design 7 0.995 -90.0 479.7 41,876 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 1.000 -90.0 479.7 41,414 6 000-PI-01-000001 V-201 E-201 020001 Design 8 2.44E-06 4.88E-06 N/A - - 24 6"-NG-2004-03SA0S30-N- 2004 NG 000-PI-01-000001 E-201 186512-000-PR-03-020001 E-202 020001 Design 9 / 10 1.000 95.5 474.7 45,736 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 25 3"-LNG-2005-03SA0S30-CC-4.5 2005 LNG 000-PI-01-000001 E-202 186512-000-PR-03-020001 FV / E-202 020001 Design 11 0.000 -255.0 469.7 45,736 3 330 100.6 16.2 5.03E-05 N/A N/A 2.01E-04 P1 3.00 FLACS - 23 6"-LNG-2003-03SA0S30-CC-3.0 2003 LNG 186512-000-PR-03-020001 40 12.2 7.9 8.54E-06 - - 26 6"-LNG-2006-01SA0S30-CC-4.5 2006 LNG 000-PI-01-000001 FV / E-202 186512-000-PR-03-020001 TK-401 040001 Design 12 0.000 -253.1 33.7 45,736 6 140 42.68 27.5 8.54E-06 1.71E-05 N/A 2.99E-05 - - - - 27 2"-LNG-2007-03SA0S30-CC-3.0 2007 LNG 000-PI-01-000001 V-201 186512-000-PR-03-020001 FV / V-201 020001 Design 30 0.000 -90.0 479.7 463 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 28 2"-LNG-2008-03SA0S30-CC-3.0 2008 LNG 000-PI-01-000001 FV / V-201 186512-000-PR-03-020001 E-201 020001 Design 31 0.331 -130.0 123.8 463 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 29 2"-NG-2009-03CB1S01-N- 2009 NG 000-PI-01-000001 E-201 186512-000-PR-03-020001 V-801 080101 Design 32 0.859 94.2 118.8 463 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - 30 10"-MR-2016-03SA0S30-CC-3.0 2016 MR 000-PI-01-000001 E-202 186512-000-PR-03-020001 E-202 020001 Design N/A 1.000 -52.0 570.0 204,694 10 20 6.098 10.9 1.22E-06 2.44E-06 N/A 4.27E-06 - - - 31 6"-MR-2017-03SA0S30-CC-4.5 2017 MR 000-PI-01-000001 E-202 186512-000-PR-03-020001 PV / E-202 020001 Design 46 0.000 -255.0 565.0 202,805 6 20 6.098 3.9 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 32 8"-MR-2018-03SA0S30-CC-5.0 2018 MR 000-PI-01-000001 PV / E-202 186512-000-PR-03-020001 E-202 020001 Design 47 0.053 -259.0 87.0 202,805 8 20 6.098 7.0 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 33 20"-MR-2019-03CB1S01-N- 2019 MR 000-PI-01-000001 E-202 186512-000-PR-03-020001 V-202 020201 Design 40 1.000 89.2 77.0 305,304 20 230 70.12 501.8 1.40E-06 7.01E-06 1.40E-05 2.80E-05 - - - - 34 8"-MR-2021-03SA0S30-CC-5.0 2021 MR 000-PI-01-000001 E-202 186512-000-PR-03-020001 TV / E-202 020001 Design 50 0.000 -6.0 560.2 100,610 8 20 6.098 7.0 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 35 8"-MR-2021-03SA0S30-CC-5.0 2021 MR 000-PI-01-000001 TV / E-202 186512-000-PR-03-020001 V-209 020001 Design 51 0.186 -30.1 82.0 100,610 8 40 12.2 14.0 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 36 6"-MR-2022-03SA0S30-CC-5.0 2022 MR 000-PI-01-000001 V-209 186512-000-PR-03-020001 E-202 020001 Design 51 vapor 1.000 -30.1 82.0 18,713 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 37 4"-MR-2023-03SA0S30-CC-3.0 2023 MR 000-PI-01-000001 V-209 186512-000-PR-03-020001 E-202 020001 Design 51 liquid 0.000 -30.1 82.0 81,897 4 40 12.2 3.5 6.10E-06 N/A N/A 2.44E-05 - - - - 38 10"-MR-2026-03SA0S30-CC-3.0 2026 MR 000-PI-01-000001 10"-2016 186512-000-PR-03-020001 FV / E-201 020001 Design 52 0.000 -52.0 570.0 1,888 10 10 3.049 5.5 6.10E-07 1.22E-06 N/A 2.13E-06 - - - - 39 2"-MR-2027-03SA0S30-CC-3.0 2027 MR 000-PI-01-000001 FV / E-201 186512-000-PR-03-020001 E-201 020001 Design 53 0.334 -109.9 82.0 1,888 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - - 40 3"-MR-2028-03CB1S01-N- 2028 MR 000-PI-01-000001 E-201 186512-000-PR-03-020001 20"-2019 020001 Design 54 1.000 94.2 77.0 1,888 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 41 10"-MR-2015-03CB1S01-N- 2015 MR 000-PI-01-000001 V-204 186512-000-PR-03-020101 E-202 020001 Design 45 1.000 94.2 575.0 204,694 10 40 12.2 21.8 2.44E-06 4.88E-06 N/A 8.54E-06 - - - distance from separator to platefin to be minimized 6.86E-06 - - - distance from separator to platefin to be minimized 42 4"-MR-2020-03CB1S01-N- 563.2 100,610 13.72 3.9 N/A N/A 2.74E-05 43 16"-MR-2037-03CB1S01-N- 2037 MR 000-PI-01-000001 EC-204 186512-000-PR-03-020101 V-204 020101 Design 44 0.787 94.2 580.0 305,304 16 40 12.2 55.9 8.54E-07 2.44E-06 4.88E-06 6.10E-06 - - - - 44 10"-MR-2038-03CB1S01-N- 2038 2020 MR MR 000-PI-01-000001 000-PI-01-000001 10"-2015 V-204 186512-000-PR-03-020101 186512-000-PR-03-020101 PV / V-202 E-202 020201 020001 Off-Design Design N/A 49 1.000 0.008 94.2 93.5 575.0 NNF 10 4 50 45 15.24 27.3 3.05E-06 6.10E-06 N/A 1.07E-05 - - - NNF 2040 MR 000-PI-01-000001 10"-2015 186512-000-PR-03-020101 PV / V-205 021001 Off-Design - NNF 46 2"-MR-2040-03CB1S01-N- N/A 1.000 94.2 575.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 47 20"-MR-2032-03CB1S01-N- 2032 MR 000-PI-01-000001 V-202 186512-000-PR-03-020201 C-201 020301 Design 40 1.000 89.2 77.0 305,304 20 20 6.098 43.6 1.22E-07 6.10E-07 1.22E-06 2.44E-06 - - - - 48 2"-MR-2033-03CB1S01-N- X2 (2033 Duplicate) MR 000-PI-01-000001 V-202 186512-000-PR-03-020201 2"-2102 020201 Off-Design N/A 0.000 89.2 77.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 2.44E-05 - - - - - NNF 49 10"-MR-2044-03CB1S01-N- 2044 MR 000-PI-01-000001 PV / V-202 186512-000-PR-03-020201 20"-2019 020201 Off-Design N/A 1.000 97.2 575.0 NNF 10 40 12.2 21.8 2.44E-06 4.88E-06 N/A 8.54E-06 - - - NNF 50 12"-MR-2033-06CB1S01-PP-1.0 2033 MR 000-PI-01-000001 C-201 186512-000-PR-03-020301 EC-204 020101 Design 43 1.000 277.0 592.0 305,304 12 50 15.24 39.3 1.07E-06 3.05E-06 6.10E-06 7.62E-06 - - - - 51 6"-MR-2035-06CB1S01-N- 2035 MR 000-PI-01-000001 12"-2033 186512-000-PR-03-020301 HV / C-201 020301 Off-Design N/A 1.000 277.0 592.0 75,000 6 50 15.24 9.8 3.05E-06 6.10E-06 N/A 1.07E-05 - - - NNF 52 6"-MR-2041-03CB1S01-N- 2041 MR 000-PI-01-000001 HV / C-201 186512-000-PR-03-020301 20"-2032 020301 Off-Design N/A 1.000 277.0 592.0 75,000 6 6.098 3.9 1.22E-06 2.44E-06 N/A - NNF 56 10"-MR-2043-03CB1S01-N- 2043 MR 000-PI-01-000001 C-201-V01 186512-000-PR-03-020302 PV / 10"-2044 020201 Off-Design N/A 1.000 111.3 147.0 NNF 10 40 12.2 21.8 2.44E-06 4.88E-06 N/A 8.54E-06 - - - NNF 57 2"-MR-2042-03CB1S01-N- 2042 MR 000-PI-01-000001 C-201 1st Stage 186512-000-PR-03-020302 2"-X2 020201 Off-Design N/A 1.000 120.4 37.4 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 2"-MR-2045-03CB1S01-N- 2045 MR 000-PI-01-000001 C-201-V01 186512-000-PR-03-020302 2"-2042 020201 Off-Design N/A 0.000 111.3 147.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF NNF 58 20 4.27E-06 - - 59 2"-MR-2111-03CB1S01-N- 2111 MR 000-PI-01-000001 10"-2043 186512-000-PR-03-020302 PCV / V-206 021002 Off-Design N/A 1.000 111.3 147.0 NNF 2 390 118.9 8.5 5.95E-05 N/A N/A 2.38E-04 - - N/A 60 2"-MR-2101-03CB1S01-N- 2101 MR 000-PI-01-000001 V-205 186512-000-PR-03-021001 PV / V-205 021001 Off-Design N/A 1.000 94.2 575.0 0 2 325 99.09 7.1 4.95E-05 N/A N/A 1.98E-04 P1 2.00 Phast 61 2"-MR-2102-03CB1S01-N- 2102 MR 000-PI-01-000001 PV / V-202 186512-000-PR-03-021001 2"-2033 020201 Off-Design N/A 1.000 89.2 77.0 0 2 210 64.02 4.6 3.20E-05 N/A N/A 1.28E-04 P1 2.00 Phast 2 390 118.9 5.95E-05 N/A N/A 62 2"-MR-2106-03CB1S01-N- 2106 MR 000-PI-01-000001 V-205 186512-000-PR-03-021001 20"-2019 020201 Off-Design N/A 1.000 94.2 575.0 2.38E-04 - - N/A NNF 63 2"-MR-2112-01CB1S01-N- 2112 MR 000-PI-01-000001 PCV / V-206 186512-000-PR-03-021002 V-206 021002 Off-Design N/A 1.000 111.3 147.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 64 2"-MR-2113-01CB1S01-N- 2113 MR 000-PI-01-000001 2"-2112 186512-000-PR-03-021002 V-207 021002 Off-Design N/A 1.000 111.3 147.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 65 2"-MR-2116-01CB1S01-N- 2116 MR 000-PI-01-000001 V-206 186512-000-PR-03-021002 V-206 Fill Hose 021002 Off-Design N/A 0.000 13.0 50.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 66 2"-MR-2117-01CB1S01-N- 2117 MR 000-PI-01-000001 V-207 186512-000-PR-03-021002 V-207 Fill Hose 021002 Off-Design N/A 0.000 70.0 50.0 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 67 2"-MR-2118-01CB1S01-N- 2118 MR 000-PI-01-000001 2"-2112 186512-000-PR-03-021002 2"-2119 021002 Off-Design N/A 1.000 13.9 50.0 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 68 2"-MR-2119-01CB1S01-N- 2119 MR 000-PI-01-000001 2"-2118 186512-000-PR-03-021002 V-206 Vap Rtn 021002 Off-Design N/A 1.000 13.9 50.0 NNF 2 30 9.146 0.7 4.57E-06 N/A N/A 1.83E-05 - - - NNF 69 2"-MR-2120-01CB1S01-N- 2120 MR 000-PI-01-000001 2"-2113 186512-000-PR-03-021002 2"-2120 021002 Off-Design N/A 1.000 97.2 14.7 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 70 2"-MR-2121-01CB1S01-N- 2121 MR 000-PI-01-000001 2"-2120 186512-000-PR-03-021002 V-207 Vap Rtn 021002 Off-Design N/A 1.000 97.2 14.7 NNF 2 30 9.146 0.7 4.57E-06 N/A N/A 1.83E-05 - - - NNF 71 6"-MR-2122-01CB1S01-N- 2122 MR 000-PI-01-000001 V-206 186512-000-PR-03-021002 Strainer 021002 Off-Design N/A 0.000 70.0 50.0 NNF 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - NNF 72 2"-MR-2123-03CB1S01-N- 2123 MR 000-PI-01-000001 Strainer 186512-000-PR-03-021002 2"-2102 020201 Off-Design N/A 0.000 70.0 50.0 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 73 2"-MR-2124-01CB1S01-N- 2124 MR 000-PI-01-000001 V-207 186512-000-PR-03-021002 6"-2122 021002 Off-Design N/A 0.000 70.0 50.0 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 74 2"-ET-2131-03SA0S30-N- 2131 ET 000-PI-01-000001 2"-2132 186512-000-PR-03-021003 V-208 Fill Hose 021003 Off-Design N/A 0.000 -20.0 293.0 NNF 2 30 9.146 0.7 4.57E-06 N/A N/A 1.83E-05 - - - NNF 75 2"-ET-2132-03CB1S01-N- 2132 ET 000-PI-01-000001 V-208 186512-000-PR-03-021003 2"-2131 021003 Off-Design N/A 0.000 -20.0 293.0 NNF 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 76 2"-ET-2133-03CB1S01-N- 2133 ET 000-PI-01-000001 V-208 186512-000-PR-03-021003 2"-2134 021003 Off-Design N/A 0.000 -20.0 293.0 NNF 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 77 2"-ET-2134-03SA0S30-N- 2134 ET 000-PI-01-000001 2"-2133 186512-000-PR-03-021003 PCV / V-208 021003 Off-Design N/A 0.000 -20.0 293.0 NNF 2 30 9.146 0.7 4.57E-06 N/A N/A 1.83E-05 - - - NNF 78 8"-NG-3002-01CB1S01-N- 3002 NG 000-PI-01-000001 E-301 186512-000-PR-03-030001 V-301 030101 Design 22 1.000 -20.0 14.7 4,323 8 40 12.2 14.0 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 79 2"-NG-3008-03CB1S01-N- 3008 NG 000-PI-01-000001 3"-3003 186512-000-PR-03-030001 3"-8001 080101 Off-Design 23 1.000 110.5 474.7 389 2 260 79.27 5.7 3.96E-05 N/A N/A 1.59E-04 P1 2.00 Phast - 80 2"-NG-3009-03CB1S01-N- 3009 NG 000-PI-01-000001 3"-3003 186512-000-PR-03-030001 E-301 030001 Off-Design N/A 1.000 110.5 474.7 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 81 3"-NG-3010-03CB1S01-N- 3010 NG 000-PI-01-000001 PV / C-301 186512-000-PR-03-030001 4"-3010 010001 Design 23 1.000 110.5 264.7 4,323 3 290 88.41 14.2 4.42E-05 N/A N/A 1.77E-04 P1 3.00 Phast - 82 3"-NG-3011-03CB1S01-N- 3011 NG 000-PI-01-000001 3"-3003 186512-000-PR-03-030001 3"-3012 030001 Design 23 1.000 110.5 474.7 4,323 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 83 3"-NG-3012-03CB1S01-N- 3012 NG 000-PI-01-000001 PV / C-301 186512-000-PR-03-030001 6"-2004 020001 Design 23 1.000 110.5 474.7 4,323 3 190 57.93 9.3 2.90E-05 N/A N/A 1.16E-04 P4 1.00 Assoc. to #79 - 84 6"-LNG-4036-01SA0S30-CC-4.5 4036 LNG 000-PI-01-000001 HYLEBOS 186512-000-PR-03-040103 8"-3001 030001 Design 62 1.000 -240.0 15.2 3,593 6 1000 304.9 196.3 6.10E-05 1.22E-04 N/A 2.13E-04 P1 6.00 Phast 85 6"-NG--01CB1S01-N- 000-PI-01-000001 V-301 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 86 6"-NG--01CB1S01-N- X29 NG 000-PI-01-000001 8"-X29 186512-000-PR-03-030101 C-301B 030201 Design 22 1.000 -20.0 14.7 2,161 6 60 18.29 11.8 3.66E-06 7.32E-06 N/A 1.28E-05 - - - - 87 3"-NG--03CB1S01-N- X3 / 3003 NG 000-PI-01-000001 V-302 186512-000-PR-03-030101 PV / C-301 030001 Design 23 1.000 110.5 474.7 4,323 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 88 3"-NG-3006-03CB1S01-N- 3006 NG 000-PI-01-000001 C-301B 186512-000-PR-03-030201 E-302 030101 Design N/A 1.000 284.1 500.7 2,161 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 89 2"-FG-3501-01CB1S01-N- 3501 FG 000-PI-01-000001 2"-8005 186512-000-PR-03-035001 PCV / HS-351 035001 Design N/A 1.000 114.9 69.7 TBD 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - assist gas 90 2"-FG-3502-01CB1S01-N- 3502 FG 000-PI-01-000001 PCV / HS-351 186512-000-PR-03-035001 2"-4084 035001 Design N/A 1.000 114.9 69.7 TBD 2 30 9.146 0.7 4.57E-06 N/A N/A 1.83E-05 - - - assist gas 91 8"-LNG-3503-01SA0S30-N- 3503 LNG 000-PI-01-000001 V-351 186512-000-PR-03-035001 HS-351 035001 Design N/A 1.000 -240.0 15.2 TBD 8 220 67.07 76.8 1.34E-05 2.68E-05 N/A 4.70E-05 P4 1.00 Assoc. to #84 gas to flare X28 NG 186512-000-PR-03-030101 C-301A 030101 Design 22 1.000 -20.0 14.7 NNF 2,161 6 8.5 92 8"-LNG-3504-01SA0S30-N- 3504 LNG 000-PI-01-000001 Flare Header 186512-000-PR-03-035001 8"-4084 035001 Design N/A 1.000 -240.0 15.2 TBD 8 280 85.37 97.7 1.71E-05 3.41E-05 N/A 5.98E-05 P2 2.67 Assoc. to #84 seal gas leakage & chromatograph sweeps 94 8"-LNG-4084-01SA0S30-N- 4084 LNG 000-PI-01-000001 4"-4084 186512-000-PR-03-035001 V-351 035001 Design N/A 1.000 114.9 69.7 TBD 8 640 195.1 223.4 3.90E-05 7.80E-05 N/A 1.37E-04 P1 8.00 N/A process flare header - acid gas not flammable 8 630 192.1 219.9 95 8"-BOG-3001-01SA0S30-CC-5.0 3001 BOG 000-PI-01-000001 TK-401 186512-000-PR-03-040001 15.2 4,323 3.84E-05 7.68E-05 N/A 1.34E-04 P1 8.00 Phast - 96 6"-LNG--01SA0S30-CC-4.5 X35 LNG 000-PI-01-000001 6"-2006 186512-000-PR-03-040001 TK-401 040001 Design 12 0.000 -253.1 33.7 45,736 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - NNF 100 2"-LNG--01SA0S30-CC-4.0 X31 LNG 000-PI-01-000001 6"-2006 186512-000-PR-03-040001 TK-401 040001 Design N/A 0.000 -253.1 33.7 NNF 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 101 6"-LNG-4001-01SA0S30-CC-4.5 4001 LNG 000-PI-01-000001 P-401A 186512-000-PR-03-040101 10"-4007 040101 Design 60 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - 102 6"-LNG-4002-01SA0S30-CC-4.5 4002 LNG 000-PI-01-000001 6"-4001 186512-000-PR-03-040101 10"-4009 040101 Off-Design N/A 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - E-301 030001 Design 21 1.000 -240.0 Page 1 of 2 A 27-Mar-2015 LA GCB PSE Revision: Date: Made By: Checked: Office: Job Number: Document No. Calculation No. Pipe Inventory & Failure Rate Calculations - Hole Size Evaluation Client: Project: 186512 186512-000-PR-LS-01000 Puget Sound Energy Tacoma LNG FERC Failure Rate Per Year of Operation w.r.t Type of Failure Origin Item # Pipe Segment Line # Fluid Code Destination HMB Case & Stream # Stream Conditions Line Size (in) Plot Plan DWG No. From P&ID # To P&ID # Case Stream # Vapor Frac. Temperature (deg °F) Pressure (psia) Flow Rate (lb/hr) Estimated Line Length Line Volume (ft3) (ft) (m) Piping (P1): Catastrophic Rupture Piping (P2): Release from hole w/ Effective diameter of 1/3 Diameter Piping (P3): Release from hole w/ Effective diameter of 10% Diameter, up to 2" CHECK Hole Size Piping (P4): for Hole Size Analyzed (in) Release from > 3E-5 hole w/ Effective diameter of 1" Analysis By Comments 103 6"-LNG-4003-01SA0S30-CC-4.5 4003 LNG 000-PI-01-000001 P-401B 186512-000-PR-03-040101 10"-4007 040101 Design 60 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - 104 6"-LNG-4004-01SA0S30-CC-4.5 4004 LNG 000-PI-01-000001 6"-4003 186512-000-PR-03-040101 10"-4009 040101 Off-Design N/A 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - 105 6"-LNG-4005-01SA0S30-CC-4.5 4005 LNG 000-PI-01-000001 P-401C 186512-000-PR-03-040101 10"-4007 040101 Design 60 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - 106 6"-LNG-4006-01SA0S30-CC-4.5 4006 LNG 000-PI-01-000001 6"-4005 186512-000-PR-03-040101 10"-4009 040101 Off-Design N/A 0.000 -258.6 158.5 288,068 6 30 9.146 5.9 1.83E-06 3.66E-06 N/A 6.40E-06 - - - - 107 10"-LNG-4007-01SA0S30-CC-5.0 4007 LNG 000-PI-01-000001 LNG Header 186512-000-PR-03-040101 LNG Distrib. 040102 Design N/A 0.000 -258.6 158.5 1,071,500 10 410 125 223.6 2.50E-05 5.00E-05 N/A 8.75E-05 P2 3.33 FLACS - 108 10"-LNG-4009-01SA0S30-CC-5.0 4009 LNG 000-PI-01-000001 Recycle Header 186512-000-PR-03-040101 TK-401 040101 Off-Design N/A 0.000 -258.6 158.5 576,136 10 40 12.2 21.8 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 109 10"-LNG-4017-01SA0S30-CC-5.0 4017 LNG 000-PI-01-000001 10"-4007 186512-000-PR-03-040102 10"-4060 040301 Design 65 0.000 -258.6 158.5 1,071,500 10 350 106.7 190.9 2.13E-05 4.27E-05 N/A 7.47E-05 P2 3.33 FLACS - 110 4"-LNG-4018-01SA0S30-CC-4.5 4018 LNG 000-PI-01-000001 10"-4017 186512-000-PR-03-040102 U-405 040401 Design 63 0.000 -258.1 50.0 130,637 4 150 45.73 13.1 2.29E-05 N/A N/A 9.15E-05 P4 1.00 FLACS - 111 2"-LNG-4021-01SA0S30-N- 4021 LNG 000-PI-01-000001 E-306 186512-000-PR-03-040102 8"-3001 030001 Off-Design N/A 1.000 -88.3 15.7 1,136 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 112 6"-LNG-4022-01SA0S30-CC-4.5 4022 LNG 000-PI-01-000001 10"-4007 186512-000-PR-03-040102 P-402 040201 Design 70 0.000 -258.5 151.0 119,745 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 113 8"-LNG-4023-01SA0S30-CC-5.0 4023 LNG 000-PI-01-000001 10"-4007 186512-000-PR-03-040102 HYLEBOS 040103 Design 61 0.000 -259.2 52.6 1,071,500 8 890 271.3 310.7 5.43E-05 1.09E-04 N/A 1.90E-04 P1 8.00 FLACS Full Line Break at Run-out Flow of All Three Pumps - 115 2"-LNG-4024-01SA0S30-CC-4.0 4024 LNG 000-PI-01-000001 HYLEBOS 186512-000-PR-03-040103 4x2 Exp 040102 Off-Design N/A 1.000 -203.4 17.2 21,800 2 890 271.3 19.4 1.36E-04 N/A N/A 5.43E-04 P1 2.00 Assoc. to #113 115 2"-LNG-4030-01SA0S30-CC-4.0 4030 LNG 000-PI-01-000001 8"-4023 186512-000-PR-03-040103 FV / HYLEBOS 040103 Off-Design N/A 1.000 -203.4 17.2 TBD 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 115 8"-LNG-4031-01SA0S30-CC-5.0 4031 LNG 000-PI-01-000001 8"-4023 186512-000-PR-03-040103 8"-4036 040103 Off-Design N/A 1.000 -203.4 17.2 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 116 N/A 2.44E-05 - - 4"-LNG-4026-01SA0S30-CC-4.5 4026 LNG 000-PI-01-000001 10"-4009 040101 Off-Design N/A 1.000 -258.8 17.2 4 40 12.2 3.5 6.10E-06 - NNF 120 6"-LNG-4037-01SA0S30-CC-4.5 4037 LNG 000-PI-01-000001 6"-4022 186512-000-PR-03-040201 P-402 040201 Design 70 0.000 -258.5 151.0 119,745 6 20 6.098 3.9 1.22E-06 2.44E-06 N/A 4.27E-06 - - - - 121 6"-LNG-4038-03SA0S30-CC-4.5 4038 LNG 000-PI-01-000001 6x4 Exp 186512-000-PR-03-040201 Vap. Feed 040202 Design 71 0.000 -259.7 316.7 119,745 6 40 12.2 7.9 2.44E-06 4.88E-06 N/A 8.54E-06 - - - - 122 4"-LNG-4038-03SA0S30-CC-4.5 4038 LNG 000-PI-01-000001 P-402 186512-000-PR-03-040201 6x4 Exp 040201 Design 71 0.000 -259.7 316.7 119,745 4 20 6.098 1.7 3.05E-06 N/A N/A 1.22E-05 - - - - 123 2"-LNG-4041-01SA0S30-CC-3.5 4041 LNG 000-PI-01-000001 P-402 186512-000-PR-03-040201 6"-X36 040201 Off-Design N/A 1.000 -131.5 17.2 TBD 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - NNF 124 3"-LNG-4047-03SA0S30-CC-4.0 4047 LNG 000-PI-01-000001 6"-4038 186512-000-PR-03-040201 FV / LNG Vap 040201 Off-Design N/A 0.000 -259.7 316.7 60,000 3 20 6.098 1.0 3.05E-06 N/A N/A 1.22E-05 - - - - 125 3"-LNG--01SA0S30-CC-4.0 X38 LNG 000-PI-01-000001 FV / LNG Vap 186512-000-PR-03-040201 4"-X37 040201 Off-Design N/A 0.000 -258.5 151.0 60,000 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 127 4"-LNG--01SA0S30-CC-4.5 X37 LNG 000-PI-01-000001 Recycle Header 186512-000-PR-03-040201 10"-4009 040101 Off-Design N/A 0.000 -259.7 316.7 NNF 4 190 57.93 16.6 2.90E-05 N/A N/A 1.16E-04 - - N/A NNF PV / LNG Distrib. 186512-000-PR-03-040102 7,000 N/A 128 2"-LNG-4054-01SA0S30-CC-3.0 4054 LNG 000-PI-01-000001 6"-4038 186512-000-PR-03-040202 4"-X37 040201 Off-Design N/A 0.000 -257.9 316.7 25,000 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 129 6"-LNG-4055-03SA0S30-CC-4.5 4055 LNG 000-PI-01-000001 6"-4038 186512-000-PR-03-040202 FV / LNG Vap 040202 Design 71 0.000 -257.9 316.7 119,745 6 140 42.68 27.5 8.54E-06 1.71E-05 N/A 2.99E-05 - - - - 130 6"-LNG-4056-03SA0S30-CC-4.5 4056 LNG 000-PI-01-000001 FV / LNG Vap 186512-000-PR-03-040202 E-402 040203 Design 71 0.000 -257.9 316.7 119,745 6 50 15.24 9.8 3.05E-06 6.10E-06 N/A 1.07E-05 - - - - 131 10"-NG--03CB1S01-N- X7 NG 000-PI-01-000001 10"-X8 186512-000-PR-03-040202 Plant Outlet 010001 Design 73 1.000 64.6 263.7 117,114 10 560 170.7 305.4 3.41E-05 6.83E-05 N/A 1.20E-04 P1 10.00 Phast 133 10"-LNG-4059-03SA0S30-N- 4059 LNG 000-PI-01-000001 E-402 186512-000-PR-03-040203 10"-X7 040202 Design 73 1.000 64.6 263.7 117,114 10 60 18.29 32.7 3.66E-06 7.32E-06 N/A 1.28E-05 - - - - 137 10"-LNG-4062-01SA0S30-CC-5.0 4062 LNG 000-PI-01-000001 10"-4060 186512-000-PR-03-040301 Q-402 040302 Design 65 0.000 -258.1 80.1 1,071,500 10 330 100.6 180.0 2.01E-05 4.02E-05 N/A 7.04E-05 P2 3.33 FLACS Run-out Flow of All Three Pumps NNF 138 2"-LNG-4063-01SA0S30-CC-4.0 4063 LNG 000-PI-01-000002 10"-4062 186512-000-PR-03-040301 2"-4064 040301 Off-Design N/A 1.000 -107.2 85.1 TBD 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - 140 2"-LNG-4066-01SA0S30-CC-4.0 4066 LNG 000-PI-01-000001 2"-4065 186512-000-PR-03-040301 4"-4024 040102 Off-Design N/A 1.000 -107.2 85.1 150 2 350 106.7 7.6 5.34E-05 N/A N/A 2.13E-04 P1 2.00 Assoc. to #109 - 144 3"-LNG--01SA0S30-N- X10 LNG 000-PI-01-000001 3"-X9 186512-000-PR-03-040301 8"-3001 030001 Off-Design N/A 1.000 -107.2 85.1 NNF 3 380 115.9 18.7 5.79E-05 N/A N/A 2.32E-04 - - N/A NNF 145 3"-LNG--01SA0S30-N- X11 LNG 000-PI-01-000001 3"-X10 186512-000-PR-03-040301 8"-4084 035001 Off-Design N/A 1.000 -107.2 85.1 NNF 3 150 45.73 7.4 2.29E-05 N/A N/A 9.15E-05 - - N/A NNF 148 3"-LNG--01SA0S30-CC-4.0 X13 LNG 000-PI-01-000002 2"-X14 186512-000-PR-03-040302 3"-X9 040301 Off-Design N/A 1.000 -108.2 80.1 NNF 3 330 100.6 16.2 5.03E-05 N/A N/A 2.01E-04 - - Phast NNF 149 2"-LNG--01SA0S30-CC-4.0 4064 LNG 000-PI-01-000002 8"-4062 186512-000-PR-03-040302 2"-4065 040301 Off-Design N/A 1.000 -108.2 80.1 150 2 330 100.6 7.2 5.03E-05 N/A N/A 2.01E-04 P1 2.00 Assoc. to #137 - 150 2"-LNG--01SA0S30-CC-4.0 X14 LNG 000-PI-01-000002 Q-402 186512-000-PR-03-040302 3"-X13 040302 Off-Design N/A 1.000 -108.2 80.1 TBD 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 151 2"-LNG--01SA0S30-CC-4.0 X15 LNG 000-PI-01-000002 8"-4062 186512-000-PR-03-040302 2"-X14 040302 Off-Design 1.000 -108.2 80.1 TBD 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 152 2"-LNG--01SA0S30-CC-4.0 X16 LNG 000-PI-01-000002 8"-4062 186512-000-PR-03-040302 FV / TOTE 040302 Off-Design 0.000 -258.1 80.1 TBD 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 153 2"-LNG--01SA0S30-CC-4.0 X17 LNG 000-PI-01-000002 2"-X14 186512-000-PR-03-040302 2"-X14 040302 Off-Design 1.000 -108.2 80.1 TBD 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 154 3"-LNG-4073-01SA0S30-CC-4.0 4073 LNG 000-PI-01-000001 4"-4018 186512-000-PR-03-040401 Bay #1 Liq. Fill 64 0.000 -258.1 50.0 65,319 3 6.098 1.0 3.05E-06 - - 155 2"-LNG-4080-01SA0S30-N- 4080 LNG 000-PI-01-000001 Bay #2 Vap Rtn 186512-000-PR-03-040401 14"-4089 040401 Design N/A 1.000 -258.2 17.7 NNF 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - NNF 157 3"-LNG-4085-01SA0S30-N- 4085 LNG 000-PI-01-000001 2"-4085 186512-000-PR-03-040401 3"-X10 030001 Off-Design N/A 1.000 -258.2 17.7 NNF 3 150 45.73 7.4 2.29E-05 N/A N/A 9.15E-05 - - N/A NNF 158 3"-LNG-4088-01SA0S30-CC-4.0 186512-000-PR-03-040401 Bay #2 Liq. Fill 040401 Design 20 N/A N/A 1.22E-05 - - 4088 LNG 000-PI-01-000001 4"-4018 64 0.000 -258.1 50.0 65,319 20 6.098 1.22E-05 - - - - 160 2"-LNG--01SA0S30-N- X18 LNG 000-PI-01-000001 Bay #1 Vap Rtn 186512-000-PR-03-040401 2"-4080 040401 Design N/A 1.000 -258.2 17.7 NNF 2 10 3.049 0.2 1.52E-06 N/A N/A 6.10E-06 - - - NNF 161 3"-NG-8001-03CB1S01-N- 8001 NG 000-PI-01-000001 V-801 186512-000-PR-03-080101 PV / V-801 080101 Design N/A 1.000 120.0 116.8 389 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 162 3"-FG-8002-01CB1S01-N- 8002 FG 000-PI-01-000001 PV / V-801 186512-000-PR-03-080101 FG Header 080101 Design 34 1.000 114.9 69.7 389 3 160 48.78 7.9 2.44E-05 N/A N/A 9.76E-05 P4 1.00 Assoc. to #165 - 163 3"-FG-8003-01CB1S01-N- 8003 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 PV / TK-401 040001 Off-Design N/A 1.000 114.9 69.7 TBD 3 40 12.2 2.0 6.10E-06 N/A N/A 2.44E-05 - - - - 164 2"-FG-8005-01CB1S01-N- 8005 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 HS-351 035001 Design N/A 1.000 114.9 69.7 TBD 2 180 54.88 3.9 2.74E-05 N/A N/A 1.10E-04 P4 1.00 Assoc. to #165 - 165 2"-FG-8007-01CB1S01-N- 8007 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 Pretreatment 012001 Design N/A 1.000 114.9 69.7 TBD 2 320 97.56 7.0 4.88E-05 N/A N/A 1.95E-04 P1 2.00 Phast - 166 2"-HL-8008-01CB1S01-N- 8008 HL 000-PI-01-000001 V-801 186512-000-PR-03-080101 2"-X21 080201 Design N/A 0.000 120.0 34.7 62 2 270 82.32 5.9 4.12E-05 N/A N/A 1.65E-04 P1 2.00 Phast - 167 3"-FG-8011-01CB1S01-N- 8011 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 SG / V-801 080101 Off-Design N/A 0.000 114.9 69.7 TBD 3 20 6.098 1.0 3.05E-06 N/A N/A 1.22E-05 - - - - 168 4"-FG--01CB1S01-N- X19 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 E-402 040203 Design N/A 1.000 114.9 69.7 TBD 4 40 12.2 3.5 6.10E-06 N/A N/A 2.44E-05 - - - - 169 2"-FG--01CB1S01-N- X20 FG 000-PI-01-000001 3"-8002 186512-000-PR-03-080101 HS-951 035101 Design N/A 1.000 114.9 69.7 TBD 2 50 15.24 1.1 7.62E-06 N/A N/A 3.05E-05 P4 1.00 Assoc. to #165 - 171 2"-HL--01CB1S01-N- X21 HL 000-PI-01-000001 2"-X23 186512-000-PR-03-080201 V-802 080201 Design 33 0.000 75.6 15.7 62 2 20 6.098 0.4 3.05E-06 N/A N/A 1.22E-05 - - - - 040401 Design 3 1.0 3.05E-06 N/A N/A 172 2"-HL--01CB1S01-N- X22 HL 000-PI-01-000001 V-802 186512-000-PR-03-080201 P-802 080201 Design N/A 0.000 75.6 16.7 8,122 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - - 173 2"-HL--01CB1S01-N- X23 HL 000-PI-01-000001 P-802 186512-000-PR-03-080201 Truck Conn. 080201 Design N/A 0.000 76.0 43.8 8,122 2 40 12.2 0.9 6.10E-06 N/A N/A 2.44E-05 - - - - CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION - DO NOT RELEASE Note: 1. Stream conditions and compositions based on design case. Refer to H&M Balance, 186512-PR-01-000101/104, Rev B. 2. Stream conditions not present in the H&M Balance are obtained from the Design or an appropriate Off-Design simulation model as required. 3. All distances are estimates based on available Plot Plan. 4. Final hole size selection based on maximum of the hole size determined by failure rate criteria and the largest connection to the pipe. 5. NNF (Normally No Flow) lines are not considered in credible failure scenarios due to infrequent operational utilization. 6. Pipeway elevations estimated to be 1.5 ft above grade. Page 2 of 2 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX B – PIPE FAILURE SCENARIO SUMMARY A Revision: Date: Item # Pipe Failure Scenario Summary 6-May-2015 Made By: JG Checked: GCB Client: Puget Sound Energy Office: PSE Project: Tacoma LNG Line Size Fluid Code Job Number: 186512 Document No. 186512-000-PR-LS-01000 Calculation No. Line # Line Description (in) Estimated Line Length Failure Case Code Type Hole Size (in) (ft) Sheet Consequence Analysis Tool H&MB Reference Leak Conditions Calculated Leak Rate Pressure (psia) (lb/hr) Case Stream # Vapor Frac. Temp (°F) Comments 3 8 NG 1002 plant inlet to pre-treatment P2 1/3 Diameter Hole 2.67 290 Phast Design 2 1.000 69.4 174.7 52,683 leak rate determined by Phast 18 6 NG 1010 pre-treatment to liquefier P2 1/3 Diameter Hole 2.00 480 Phast Design 6 1.000 111.3 484.7 80,677 leak rate determined by Phast 25 3 LNG 2005 rundown from liquefier to tank P1 Catastrophic Rupture 3.00 330 FLACS Design 11 0.000 -255.0 18.8 49,988 leak rate set to liquefaction rate plus 10% 60 2 MR 2101 MR equalization line P1 Catastrophic Rupture 2.00 325 Phast Off-Design 45 1.000 94.2 575.0 149,704 leak rate determined by Phast 61 2 MR 2102 MR equalization line P1 Catastrophic Rupture 2.00 310 Phast Off-Design 40 1.000 89.2 77.0 17,100 leak rate determined by Phast 79 2 NG 3008 BOG to fuel gas P1 Catastrophic Rupture 2.00 260 Phast Off-Design 23 1.000 110.5 474.7 82,873 leak rate determined by Phast 81 3 NG 3010 BOG to pipeline P1 Catastrophic Rupture 3.00 290 Phast Design 23 1.000 110.5 264.7 102,653 leak rate determined by Phast 84 6 LNG 4036 Hylebos ship vapor return P1 Catastrophic Rupture 6.00 1000 Phast Design 62 1.000 -240.0 15.2 9,866 leak rate determined by Phast 95 8 BOG 3001 BOG header P1 Catastrophic Rupture 8.00 630 Phast Design 21 1.000 -240.0 15.2 17,720 leak rate determined by Phast 107 10 LNG 4007 sendout header from tank P2 1/3 Diameter Hole 3.33 410 FLACS Design N/A 0.000 -258.6 118.5 665,710 leak rate determined by Phast for input to FLACS model 109 10 LNG 4017 sendout to TOTE - facility side P2 1/3 Diameter Hole 3.33 350 FLACS Design 65 0.000 -258.6 114.5 652,757 leak rate determined by Phast for input to FLACS model 110 4 LNG 4018 sendout to truck loading P4 1" Diameter Hole 1.00 150 FLACS Design 63 0.000 -258.1 122.3 61,123 leak rate determined by Phast for input to FLACS model 113 8 LNG 4023 sendout to Hylebos P1 Catastrophic Rupture 8.00 890 FLACS Design 61 0.000 -259.2 18.2 711,003 leak rate set to run-out flow of two in-tank pumps 131 10 NG X7 gas sendout to pipeline P1 Catastrophic Rupture 10.00 560 Phast Design 73 1.000 64.6 46.4 159,380 leak rate - run-out flow of ex-tank pump 137 10 LNG 4062 sendout to TOTE - dock side P2 1/3 Diameter Hole 3.33 330 FLACS Design 65 0.000 -258.1 98.5 598,161 leak rate determined by Phast for input to FLACS model 148 3 LNG X13 vapor return from TOTE - dock side - Catastrophic Rupture 3.00 330 Phast Off-Design N/A 1.000 -240.0 17.7 6,284 leak rate determined by Phast 165 2 FG 8007 fuel gas to pre-treatment P1 Catastrophic Rupture 2.00 320 Phast Design N/A 1.000 114.9 69.7 14,233 leak rate determined by Phast 166 2 HL 8008 heavies to storage P1 Catastrophic Rupture 2.00 270 Phast Design N/A 0.000 120.0 34.7 9,800 leak rate determined by Phast CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION - DO NOT RELEASE Note: 1. Stream conditions and compositions based on design case. Refer to H&M Balance, 186512-PR-01-000101/104. 2. Stream conditions not present in the H&M Balance are obtained from the Design or an appropriate Off-Design simulation model as required. 3. Failure case analyzed represents worst case leak size among all credible failures for a given line. 5. In instances where the calculates leak flow rate exceeds the available supply flow (i.e. run-out pump capacity), the leak pressure has been adjusted to match the sustainable flow rate. This is denoted as the equivalent pressure. = equivalent pressure used Page 1 of 1 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX C – INDEX OF EQUIPMENT CONTAINING HAZARDOUS MATERIALS Revision: Date: Made By: Checked: Office: Item A 17-Mar-2015 LA JNG Client: PSE Project: Equipment # VESSELS HEAT EXCHANGERS Puget Sound Energy Tacoma LNG Description P&ID No. (DWG) Plot Plan DWG No. Service(s) Dimensions Operating Liquid Volume (ft3) Design Pressure (psig) Design Temperature (°F) Design Capacity / Flow Duty (MMBTU/HR) Compressor & Pumps Driver Power (HP) Shaft Dia. Comments F-101 Plant Inlet Filter Separator 010001 NG 30" I.D. x 131" T-T 0.0 285 150 49,100 lb/hr - - - - Heavy Ends Separator 020001 LNG 24" I.D. x 96" T-T 13.1 675 -150 to 120 41,876 lb/hr - - - - V-209 MRL Distribution Vessel 020001 MRL 24" I.D. x 80" T-T 8.8 675 -320 to 150 201,800 lb/hr - - - Fives Cryo Quote V-202 MRL Compressor Suction Separator 020201 MRL 54" I.D. x 192" T-T 0.0 675 150 303,804 lb/hr - - - - 020302 MRL 60" I.D. x 72" OAH 0.0 675 150 303,804 lb/hr - - - Part of MRL Compressor Skid 020101 MRL 72" O.D. x 144" T-T 170.2 675 150 303,804 lb/hr - - - - V-204 COMPRESSORS & PUMPS Index of Equipment Containing Hazardous Materials 186512 186512-000-PR-LS-01001 V-201 V-203 SC. Job Number: Document No. Calculation No. MRL Compressor 2nd Stage Suction Separator MRL Condensate Separator V-901 Pretreatment - Mercury Removal Vessel TBD NG 60" I.D. x 167 T-T 0.0 640 180 49,100 lb/hr - - - Process Group Quote 03/06/15 T-901 Pretreatment - Amine Contactor TBD NG 42" I.D. x 772" T-T 0.0 640 220 49,100 lb/hr - - - Process Group Quote 03/06/15 F-903 Pretreatment - Inlet Filter Coalescer TBD NG 20" O.D. x 126" OAL 0.0 640 220 49,100 lb/hr - - - Process Group Quote 03/06/15 Pretreatment - Molecular Sieve Dryers TBD NG 72" O.D. x 196" T-T 0.0 640 550 49,100 lb/hr - - - Process Group Quote 03/06/15 49,100 lb/hr V-903 A/B TBD NG 16" O.D x 70" OAL 0.0 640 180 - - - Process Group Quote 03/06/15 V-205 MRL Storage Vessel 021001 MRL 132" O.D. x 690" T-T 1300.0 675 150 3 5880 ft - - - storage vessel, NNF, vessel is buried, Estimated MaxCapacity V-206 Propane Storage Vessel 021002 MRL 52" O.D. x 216" T-T 137.8 250 150 275.7 ft3 - - - storage vessel, NNF, vessel is buried, op. capacity 3 F-904 A/B Pretreatment - Dry Gas Filters V-207 i-Pentane Storage Vessel 021002 MRL 63" O.D. x 252" T-T 236.8 250 150 473.5 ft - - - storage vessel, NNF, vessel is buried, op. capacity V-208 Ethylene Storage Vessel 021003 MRL 66" O.D. x 264" T-T 272.2 675 150 544.5 ft3 - - - storage vessel, NNF, vessel is buried, op. capacity V-301 BOG Compressor Suction Separator 030101 NG 36" O.D. x 84" T-T 0.0 150 -270 to 150 4,030 lb/hr - - - - V-302 Oil Coalescing Filter 030101 NG TBD 0.0 550 350 4,030 lb/hr - - - Part of BOG Compressor Skid V-351 Flare Knockout Drum 035001 NG 24" I.D. x 60" T-T 2.5 50 -270 to 300 4,400 lb/hr - - - - F-801 Fuel Gas Filter 080101 FG 8" O.D. x 24" OAL 0.0 320 150 4,722 lb/hr - - - - V-801 Fuel Gas Separator Vessel 080101 FG 18" I.D. x 96" T-T 2.5 675 200 1,389 lb/hr - - - - V-802 Heavies Storage Vessel 080201 NGL 72" O.D. x 240" T-T 535.0 150 150 593.76 ft3 - - - storage vessel, NNF, vessel is buried, op. capacity V-951 Emergency Flare Knockout Drum 035101 NG 48" O.D. x 120" T-T 0.0 50 -20 to 300 15,900 lb/hr - - - - EC-101 Feed Gas Compressor Aftercooler 010102 NG 228" L x 94" W 0.0 675 310 49,100lb/hr 4.675 - - - TBD NG 12" I.D. x 288" OAL 0.0 640 185 49,100 lb/hr 0.795 - - Process Group Quote 03/06/15 - BEM S&T HX E-909 Pretreatment - Inlet Gas Cooler E-201 Heavy Ends Platefin Heat Exchanger 020001 LNG, NG, MRL 186" x 24" x 30.25" 2.49 - MRL 675 -320 to 150 41,876 lb/hr 5.22 - - Flow is maximum for a single pass (NG product) E-202 Liquefaction Platefin Heat Exchanger 020001 LNG, NG, MRL 324" x 48" x 121.7" 165 - MRL 675 -320 to 150 303,804 lb/hr 83.76 - - Flow is maximum for a single pass (MRL refrigerant) E-203 MRL Compressor 1st Stage Intercooler 020302 MRL TBD 0.0 675 375 303,804 lb/hr 7.755 Part of MRL Skid MRL Fin-Fan Cooler 020101 MRL 684" L x 312" W 0.0 675 330 303,804 lb/hr 39.17 - - - E-301 BOG Preheater 030001 NG TBD 0.0 150 -260 4,030 lb/hr 0.3784 - - Part of BOG Compressor Skid E-302 BOG Compressor Aftercooler 030101 NG TBD 0.0 600 375 4,030 lb/hr 0.3514 E-306 Tank Vapor Makeup Vaporizer 040102 NG TBD 0.0 150 -260 1,136 lb/hr 0.3452 E-402 LNG Vaporizer 040203 LNG 134" O.D. x 552" OAL 0.0 420 -270 to 150 119,745 lb/hr 44.9 EC-204 Part of BOG Compressor Skid - - Water Bath dimensions C-101 Feed Gas Compressor 010101 NG - - 675 350 49,100 lb/hr - 2,250 TBD Temperature upstream of aftercooler C-201 MRL Compressor 020301 MRL - - 675 350 303,804 lb/hr - 13,000 TBD Temperature upstream of aftercooler LNG In-tank Pumps 040101 LNG - - 160 -270 288,050 lb/hr - 150 TBD Mass flowrate per in-tank pump P-402 LNG Vaporization Pump 040201 LNG - - 375 -270 119,724 lb/hr - 120 TBD - C-301 A Boil-off Gas Compressor 030101 NG - - 600 375 2,015 lb/hr - 300 TBD Temperature upstream of aftercooler C-301 B Boil-off Gas Compressor 030201 NG - - 600 375 2,015 lb/hr - 300 TBD Temperature upstream of aftercooler C-202 MRL Storage Compressor 021001 MRL - - 600 300 150 lb/hr - 15 TBD - P-802 Heavies Loading Pump 080201 NG - - 100 150 8,123 lb/hr - 10 TBD - LNG Loading Arm w/ Piggyback Vapor Return 040302 LNG 6" NPS 1.0 100 -270 576,100 lb/hr - - - LNG Fuel Bunkering P-401 A/B/C QL-402 CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION ‐  DO NOT RELEASE Page 1 of 2 A 17-Mar-2015 LA JNG Client: PSE Project: Compressor & Pumps Service(s) Dimensions Operating Liquid Volume (ft3) Design Pressure (psig) Design Temperature (°F) Design Capacity / Flow 040401 LNG 14" 0.0 150 150 5,388 ft3 - - - - Dual Truck Loading Skid 040401 LNG 3" NPS x 60 L 2.0 100 -270 65,354 lb/hr - - - Operating Liquid Volume of Two (2) Hoses LNG Storage Tank on Isolators Full Concrete Containment 040001 LNG 124' I.D. x 100'-7.5" H 1,069,444 3 -270 Net Storage 8,000,000 gallons - - - Dimensions for Inner Tank 144' O.D. x 113'-2" Concrete Outer Wall Height Equipment # - LNG Truck Dump Sump U-405 TANK 186512 186512-000-PR-LS-01001 Puget Sound Energy Tacoma LNG Item TK-401 Job Number: Document No. Calculation No. Index of Equipment Containing Hazardous Materials MIS Revision: Date: Made By: Checked: Office: Description P&ID No. (DWG) Plot Plan DWG No. Duty (MMBTU/HR) Driver Power (HP) Shaft Dia. Comments Note: 1. All Items are Preliminary 2. Refer to Plot Plan Dwg. 186512-000-PI-01-00001 for location of all items. CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION ‐  DO NOT RELEASE Page 2 of 2 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX D – LIMITED SOURCE SPILL RATE CALCULATIONS Revision: Date: Spill Rate Calculations Piping Items 113 & 25 A 30-Apr-2015 Made By: JG Checked: GCB Client: Office: PSE Project: Job No: 186512 Doc No. 186512-000-PR-CL-01006 Calc No. Puget Sound Energy Tacoma LNG Sheet 1 of 1 Calculate Run Out Flow Rate for Piping Item No. 113    (Gexcon Cases 7, 8 & 9) Per PHMSA direction (see website FAQ), spill scenarios are to  consider pump run out conditions . Hylebos LNG Supply Line In‐Tank Pump Runout Flow  (q_r) No of Pumps Running  (n) Maximum Total Flow  (Q) 1,630 2 3,260 26,148 10 32,600 Spill Duration  (t) Spill Volume  (V) Density  () Mass Flow Rate (W) Total Spill Mass Tank Static Head Pump Suction Pressure Pump Head at Runout Pump Delta P Max. Pump Discharge Pressure h Ps H DP Pd gpm gpm ft^3/hr minutes gallons per Ebara: Mar. 18, 2015 ‐ Proposal No.: 13156A‐1US required for ship bunkering = q_r * n per NFPA 59A: Chap. 5 Plant Siting & Layout = Q * t 3 4,358 ft 27.19 lb/ft^3 711003 lb/hr H&MB Stream #12 = Q *  118501 lb = W * t 92 32.1 500 94.4 126.5 ft psia ft psid psia tank HLL =h * * 1 ft^2 / 144 in^2 + 14.7 psia per Ebara: Mar. 18, 2015 ‐ Proposal No.: 13156A‐1US =H * * 1 ft^2 / 144 in^2 =Ps + DP Calculate Flow for LNG Rundown Line, Piping Item No. 25 (Gexcon Case 6) Liquefaction cannot be sustained at theoretical leak flow rates.  To  generate a worst case 10 minute liquid LNG spill, the flow rate is  governed by the liquefaction capacity of the facility plus 10% excess.  Design Liquefaction Flow Rate Excess Mass Flow Rate (W) Spill Duration  (t) Total Spill Mass 45,444 lb/hr 10% 49988 lb/hr 10 minutes 8331 lb H&MB Stream #11 per NFPA 59A: Chap. 5 Plant Siting & Layout = W * t TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX E – PHAST ANALYSIS RESULTS: VAPOR DISPERSION PLOTS ITEM 3: 2.67” Diameter Leak in Plant Inlet NG Line (8”-NG-1002) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 18: 2” Diameter Leak in NG Line From Pre-Treatment to Liquefier (6”-NG-1010) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 60: 2” Diameter Rupture of Refrigerant Make-up Line From MRL Storage to Liquefaction Area (2”-MR-2101) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 61: 2” Diameter Rupture of Refrigerant Make-up Line From Liquefaction Area to MRL Compressor Suction Separator (2”-MR-2102) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 79: 2” Diameter Rupture of Compressed Boil-Off Gas Line to Fuel Gas Supply (2”-NG-3008) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 81: 3” Diameter Rupture of Compressed Boil-Off Gas Line to Pipeline Supply (3”-NG-3010) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 84: 6” Diameter Rupture of Vapor Return Line From Hylebos Dock (6”-LNG-4036) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 95: 8” Diameter Rupture of Boil-Off Gas Vapor Header (8”-BOG-3001) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 131: 10” Diameter Rupture of Gas Sendout to Pipeline (10”-NG-X7) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 148: 3” Diameter Rupture of Vapor Return Line at TOTE Facility (3”-LNG-X13) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 165: 2” Diameter Rupture of Fuel Gas Supply to Pre-Treatment (2”-FG-8007) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ITEM 166: 2” Diameter Rupture of Heavies Transfer Line to Heavy Ends Storage Vessel (2”-HL-8008) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE VESSEL V-204: Catastrophic Rupture of MRL Condensate Separator Vessel (V-204) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE VESSEL V-204: 0.4” Diameter Leak in MRL Condensate Separator Vessel (V-204) CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX F – LNG TANK CONTAINMENT, SPILL IMPOUNDMENT & TRENCH SIZING CALCULATIONS B LNG Tank: Outer Concrete Tank Containment Volume Revision: Date: 15-Jul-2015 Made By: GCB Checked: MES Client: Office: PSE Project: Puget Sound Energy Tacoma LNG Job No: 186512 Doc No. Calc No. 186512-000-PR-CL-01007 Sheet 1 of 1 . Maximum Inner Tank Liquid Volume Inner Tank Height Design Liquid Level in Tank H_i DLL Inner Tank ID Maximum Liquid Volume ID_i V_i Gross Excess Outer Tank Capacity Outer Tank Height Outer Tank ID H_o ID_o 103.5 ft 135.5 ft Annular Space Volume V1 129,178 ft^3 =  /4 * (ID_o^2 - ID_i^2) * H_i Height from top of Outer Tank to DLL Volume of Outer Tank above DLL h V2 17.25 ft 248,747 ft^3 = H_o - DLL =  /4 * ID_o^2 * h Outer Tank Volume Displacements Perlite Void Volume Annular Space Perlite Volume Inner Tank Roof Deck Plate Thickness Inner Tank Roof Deck Plate Volume Deck Fiberglass Blanket Thickness Fiberglass Void Volume Solid Volume of Fiberglass Blanket v V3 t_p V4 t_f v_f V5 Piping Penetration Volumes Pipe Size (in) 6 8 12 24 SUM Net Excess Outer Tank Volume Total Excess Volume Available in Outer Tank Excess Volume as a % of Inner Tank Volume Total Outer Tank Volume 95.67 ft 86.25 ft 129 ft 1,127,271 ft^3 8,430,000 gallons 50% 64,589 0.5 545 1.67 98% 436 ft^3 in ft^3 ft ft^3 =  /4 * ID_i^2 * DLL Note 1 = V1 * (1 - v) Note 2 =  /4 * ID_i^2 * t_p =  /4 * ID_i^2 * t_f * (1-v_f) Note 3 Qty 5 1 2 4 V6 V_tot Volume (ft^3) 17 6 27 217 267 ft^3 312,089 ft^3 28% =  /4 * (Pipe Size)^2 * h * Qty = V1 + V2 - V3 - V4 - V5 - V6 1,439,360 ft^3 10,770,000 gallons NOTES 1. The perlite in the annulus of the tank has a void volume of approximately 90%. Although liquid can enter the void volume of the perlite, the perlite will be assumed to have a void volume of 50% for conservatism in calculating the liquid retaining volume in the annular space. 2. 1/2" deck plate thickness is used to account for vent and support rod volumes. 3. The total volume of all pipes which penetrate the roof of the inner tank will be subtracted from the maximum liquid level to the top of the out tank shell (h). Revision: Date: A 30-Apr-2015 Made By: GCB Checked: JG Office: PSE Spill Impoundment Sizing & Thermal Job No: Radiation Calculations Doc No. 186512 186512-000-PR-CL-01005 Calc No. Client: Puget Sound Energy Tacoma LNG Project: PROCESS SUMP SPILL IMPOUNDMENT SIZING In‐Tank Pump Runout Flow 1,630 gpm No of Pumps Running 3 Maximum Total Flow  (Q) 4,890 gpm Spill Duration 10 minutes Spill Volume 48,900 gallons 3 6,537 ft 3 LNG Supply Header Volume 224 ft 3 TOTE Supply Header Volume 191 ft 3 Hylebos Supply Header Volume 311 ft 3 Minimum Impoundment Volume 7262 ft Sump Diameter 22.25 ft 2 Sump Surface Area 388.8 ft Minimum Usable Sump Depth Actual Usable Sump Depth Trench Depth Gross Sump Depth Density  () Mass Spill Rate 18.7 19.0 2.00 21.0 27.20 1,066,838 ft ft ft ft lb/ft^3 lb/hr Sheet 1 of 7 per Ebara: Mar. 18, 2015 ‐ Proposal No.: 13156A‐1US per NFPA 59A: Chap. 5 Plant Siting & Layout Line 10"‐4007 Line 10"‐4017 Line 8"‐4023 from invert of trench from trench sizing calculations H&MB Stream #12  = Q *  * (60 min/hr) / (7.48 gallons/ft^3) SPILL IMPOUNDMENT THERMAL RADIATION CALCULATION SUMMARY  LNGFIRE3 Input Pool Diameter 22.25 ft Height of Flame Base 0.0 ft Height of Target 0.0 ft Wind Speed 15.6 mph Design Basis (186512‐000‐PR‐DB‐00001) Tavg[Dec] 38.8 °F ASHRAE 2013 Station Data ‐ McChord AFB MCDBR 13.7 °F ASHRAE 2013 Station Data ‐ McChord AFB Radiation Temp 31.95 °F  = Tavg[Dec] ‐ MCDBR/2 Relative Humidity 57.2 % ASHRAE 2013 Station Data ‐ McChord AFB MW 16.62 lb/lbmol H&MB Stream #12 Density 27.20 lb/cuft Fluid Temp. 198.57 °R H&MB Stream #12 LNGFIRE3 Output NFPA 59A Radiant Heat Flux Level 2 10,000 Btu/hr‐ft 2 3,000 Btu/hr‐ft 2 1,600 Btu/hr‐ft Exclusion Distance 75.2 ft 105 ft 125.6 ft Per PHMSA direction (see website FAQ), spill scenarios are to consider pump run out conditions and also pipe / vessel de‐ inventory. For the Process & Hylebos Spill Sumps, it is assumed that a break in the main supply line will cause the tank header and main E‐ W pipe rack header to drain out.  The underground section and line on the TOTE dock will be prevented from draining to these  sumps due to gravity head. Revision: Date: A 30-Apr-2015 Made By: GCB Checked: JG Office: Spill Impoundment Sizing & Thermal Job No: Radiation Calculations Doc No. Calc No. Client: PSE 186512 186512-000-PR-CL-01005 Puget Sound Energy Tacoma LNG Project: HYLEBOS DOCK SPILL IMPOUNDMENT SIZING In‐Tank Pump Runout Flow 1,630 No of Pumps Running 2 Maximum Total Flow  (Q) 3,260 Spill Duration 10 Spill Volume 32,600 4,358 LNG Supply Header Volume 224 TOTE Supply Header Volume 191 Hylebos Supply Header Volume 311 Minimum Impoundment Volume 5083 Sump Diameter Sump Surface Area Minimum Usable Sump Depth Actual Usable Sump Depth Trench Depth Gross Sump Depth Density  () Mass Spill Rate gpm gpm minutes gallons ft3 ft3 ft3 ft3 ft3 Sheet 2 of 7 per Ebara: Mar. 18, 2015 ‐ Proposal No.: 13156A‐1US per NFPA 59A: Chap. 5 Plant Siting & Layout Line 10"‐4007 Line 10"‐4017 Line 8"‐4023 22.25 ft 2 388.8 ft 13.1 13.5 1.50 15.0 27.32 714,363 ft ft ft ft lb/ft^3 lb/hr from invert of trench from trench sizing calculations H&MB Stream #12  = Q *  * (60 min/hr) / (7.48 gallons/ft^3) SPILL IMPOUNDMENT THERMAL RADIATION CALCULATION SUMMARY  LNGFIRE3 Input Pool Diameter 22.25 ft Height of Flame Base 0.0 ft Height of Target 0.0 ft Wind Speed 15.6 mph Design Basis (186512‐000‐PR‐DB‐00001) Tavg[Dec] 38.8 °F ASHRAE 2013 Station Data ‐ McChord AFB MCDBR 13.7 °F ASHRAE 2013 Station Data ‐ McChord AFB Radiation Temp 31.95 °F  = Tavg[Dec] ‐ MCDBR/2 Relative Humidity 57.2 % ASHRAE 2013 Station Data ‐ McChord AFB MW 16.62 lb/lbmol H&MB Stream #12 Density 27.32 lb/cuft Fluid Temp. 198.57 °R H&MB Stream #12 LNGFIRE3 Output NFPA 59A Radiant Heat Flux Level 2 10,000 Btu/hr‐ft 2 3,000 Btu/hr‐ft 2 1,600 Btu/hr‐ft Exclusion Distance 75.2 ft 105 ft 125.6 ft Per PHMSA direction (see website FAQ), spill scenarios are to consider pump run out conditions and also pipe / vessel de‐ inventory. For the Process & Hylebos Spill Sumps, it is assumed that a break in the main supply line will cause the tank header and main E‐ W pipe rack header to drain out.  The underground section and line on the TOTE dock will be prevented from draining to these  sumps due to gravity head. Revision: Date: A 30-Apr-2015 Made By: GCB Checked: JG Office: Spill Impoundment Sizing & Thermal Job No: Radiation Calculations Doc No. Calc No. Client: PSE 186512 186512-000-PR-CL-01005 Puget Sound Energy Tacoma LNG Project: Sheet 3 of 7 TOTE SPILL IMPOUNDMENT SIZING (FACILITY AND DOCK SIDE SUMPS) Mass Spill Rate  (W) 665,710 lb/hr Determined from Phast leak analysis Density  () 27.32 lb/ft^3 H&MB Stream #12  = W /  / (60 min/hr) * (7.48 gallons/ft^3) Maximum Total Flow  (Q) 3,038 gpm Spill Duration 10 minutes per NFPA 59A: Chap. 5 Plant Siting & Layout Spill Volume 30,380 gallons 3 4,061 ft 3 LNG Supply Header Volume 224 ft Line 10"‐4007 3 Line 10"‐4017 TOTE Supply Header Volume 191 ft 3 Line 8"‐4023 Hylebos Supply Header Volume 311 ft 3 TOTE Supply Line Volume 180 ft Line 10"‐4062 3 Minimum Impoundment Volume 4966 ft Sump Length Sump Width Sump Surface Area Minimum Usable Sump Depth Actual Usable Sump Depth Trench Depth Gross Sump Depth 18.86 ft 14.60 ft 2 275.4 ft 18.0 18.5 1.50 20.0 ft ft ft ft from invert of trench from trench sizing calculations SPILL IMPOUNDMENT THERMAL RADIATION CALCULATION SUMMARY  LNGFIRE3 Input Sump Length 18.86 ft Sump Width 14.60 ft Height of Flame Base 0.0 ft Height of Target 0.0 ft Wind Speed 15.6 mph Design Basis (186512‐000‐PR‐DB‐00001) Tavg[Dec] 38.8 °F ASHRAE 2013 Station Data ‐ McChord AFB MCDBR 13.7 °F ASHRAE 2013 Station Data ‐ McChord AFB Radiation Temp 31.95 °F  = Tavg[Dec] ‐ MCDBR/2 Relative Humidity 57.2 % ASHRAE 2013 Station Data ‐ McChord AFB MW 16.62 lb/lbmol H&MB Stream #12 Density 27.32 lb/cuft Fluid Temp. 198.57 °R H&MB Stream #12 LNGFIRE3 Output NFPA 59A Radiant Heat Flux Level Exclusion Distance 2 68.75 ft 10,000 Btu/hr‐ft 2 91 ft 3,000 Btu/hr‐ft 2 106.25 ft 1,600 Btu/hr‐ft Per PHMSA direction (see website FAQ), spill scenarios are to consider pump run out conditions and also pipe / vessel de‐inventory. For the TOTE Spill Sump & TOTE Sendout Sump, it is assumed that a break in the supply line in the pit will cause the tank header, E‐W pipe rack  header and loading arm supply line to drain out.  The underground section will be prevented from draining becuase the outlet will be submerged.   The pipe entrance to the transition pit/sumps is currently designed to have a high point loop, which will prevent the lines on the pipe rack from  draining into the pit.  The piping volumes have been included to provide conservatism. The sump pit depth has been limited to 20 ft, based on preliminary information regarding pit working depths required for microtunneling. Revision: Date: A 30-Apr-2015 Spill Impoundment Sizing & Thermal Radiation Calculations Made By: GCB Checked: JG Client: PSE Project: Office: Job No: 186512 Doc No. 186512-000-PR-CL-01005 Calc No. Puget Sound Energy Tacoma LNG Sheet 4 of 7 Main N‐S Spill Trench Sizing (North of E‐W pipe rack) A concrete trench will be provided from the main pipe rack to the process area spill sump to convey the design spill to  the sump.  The design spill flow rate is based on the  run out flow rate of three in‐tank pumps. The following open channel flow calculation is based on the method from Mark's Handbook, 11th Edition, page 3‐59. f D h A b Trench Design Volumetric Flow Channel Width Roughness Factor for Unfinished Concrete 1 Slope of Trench 2 Q b n S 4890 gpm 2 ft 0.015 0.002 Dh / unit L Flowing Liquid Depth in Channel Flowing Liquid Cross‐Sectional Area h A 1.679 ft 3.357 ft^2 Hydraulic Radius of Trench Rh 0.627 Manning relation for Chézy coef.‐ open channel flow C 91.64 Velocity V1 3.25 ft/s Velocity V2 3.24 ft/s V1 ‐ V2 0.0006 Design Trench Depth D 2.5 ft TRENCH DEPTH OK Trench Freeboard f 9.9 in 10.89 ft^3/s goal seek value A = b * h 2 1.486 / V 1 = Q/A set to zero by varying h f = D ‐ h NOTES: 1.   Roughness factor is conservative, as this value is based on water.  Boiling LNG will have less frictional resistance. 2.   0.2% or 2 ft fall in 1,000 ft run. CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Revision: Date: Made By: A 30-Apr-2015 GCB Checked: Office: Spill Impoundment Sizing & Thermal Radiation Calculations 186512 Doc No. 186512-000-PR-CL-01005 Calc No. Client: PSE Job No: Puget Sound Energy Tacoma LNG Project: Sheet 5 of 7 E‐W Spill Trench Sizing A concrete trench will be provided from the main pipe rack to the process area spill sump to convey the design spill to  the sump.  The design spill flow rate is based on the  largest credible spill scenario for the LNG loading lines. The following open channel flow calculation is based on the method from Mark's Handbook, 11th Edition, page 3‐59. f D h A b Trench Design Volumetric Flow Channel Width 1 Roughness Factor for Unfinished Concrete  2 Slope of Trench  Q b n S 3260 gpm 2 ft 0.015 0.002 Dh / unit L Flowing Liquid Depth in Channel Flowing Liquid Cross‐Sectional Area h A 1.221 ft 2.443 ft^2 Hydraulic Radius of Trench Rh 0.550 Manning relation for Chézy coef.‐ open channel flow C 89.67 Velocity V1 2.97 ft/s Velocity V2 2.97 ft/s V1 ‐ V2 0.0000 Design Trench Depth D 2 ft TRENCH DEPTH OK Trench Freeboard f 9.3 in 7.26 ft^3/s goal seek value A = b * h 2 1.486 / V 1 = Q/A set to zero by varying h f = D ‐ h NOTES: 1.   Roughness factor is conservative, as this value is based on water.  Boiling LNG will have less frictional resistance. 2.   0.2% or 2 ft fall in 1,000 ft run. CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Revision: Date: Made By: A 30-Apr-2015 GCB Checked: Office: Spill Impoundment Sizing & Thermal Radiation Calculations 186512 Doc No. 186512-000-PR-CL-01005 Calc No. Client: PSE Job No: Puget Sound Energy Tacoma LNG Project: Sheet 6 of 7 Process N‐S Spill Trench Sizing (South of E‐W pipe rack) A concrete trench will be provided from the main pipe rack to the process area spill sump to convey the design spill to  the sump.  The design spill flow rate is based on the  largest credible spill scenario in the Liquefaction Area. The following open channel flow calculation is based on the method from Mark's Handbook, 11th Edition, page 3‐59. f D h A b Trench Design Volumetric Flow Channel Width 1 Roughness Factor for Unfinished Concrete  2 Slope of Trench  Q b n S 2408.0 gpm 2 ft 0.015 0.002 Dh / unit L Flowing Liquid Depth in Channel Flowing Liquid Cross‐Sectional Area h A 0.971 ft 1.942 ft^2 Hydraulic Radius of Trench Rh 0.493 Manning relation for Chézy coef.‐ open channel flow C 88.04 Velocity V1 2.76 ft/s Velocity V2 2.76 ft/s V1 ‐ V2 0.0000 Design Trench Depth D 1.5 ft TRENCH DEPTH OK Trench Freeboard f 6.4 in 5.37 ft^3/s goal seek value A = b * h 2 1.486 / V 1 = Q/A set to zero by varying h f = D ‐ h NOTES: 1.   Roughness factor is conservative, as this value is based on water.  Boiling LNG will have less frictional resistance. 2.   0.2% or 2 ft fall in 1,000 ft run. CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Revision: Date: A 30-Apr-2015 Spill Impoundment Sizing & Thermal Radiation Calculations Made By: GCB Checked: JG Client: PSE Project: 186512 Doc No. 186512-000-PR-CL-01005 Calc No. Puget Sound Energy Tacoma LNG Sheet 7 of 7 Determine minimum spacing between Process Sump and LNG Tank based on the maximum allowable thermal  radiation heat flux (10,000 Btu/hr‐ft2) at varying target elevations on the tank wall during a sump fire. LNGFIRE3 Input Pool Diameter 22.25 ft Height of Flame Base 0.0 ft Height of Target 0.0 ft Varied from 0 ft to 14 ft in results below Wind Speed 15.6 mph Design Basis (186512‐000‐PR‐DB‐00001) Radiation Temp 31.95 °F  = Tavg[Dec] ‐ MCDBR/2 Relative Humidity 57.2 % ASHRAE 2013 Station Data ‐ McChord AFB MW 16.62 lb/lbmol H&MB Stream #12 Density 27.32 lb/cuft H&MB Stream #12 Fluid Temp. 198.57 °R H&MB Stream #12 LNGFIRE3 Output Sump Fire Thermal Radiation at Varying Elevation Radiant Target Distance to Heat Flux Elevation Flux Level 2 BTU/hr‐ft ft ft 0 75.2 10000 5 77.13 10000 10 78.07 10000 12 78.13 10000 <‐‐ Minimum distance required based on 12 ft receptor elevation 14 78.00 10000 Flame Length 56.28 ft Flame Tile from Vertical 61.76 deg Vertical Flame Height 26.63 ft LNGFire cannot analyze above the elevation of the vertical flame length Process Sump Fire 10,000 Btu/hr‐ft2 Distance vs. Elevation 16 14 The Process Sump must be  located at least 78.2 ft away  from the LNG Tank to keep  within thermal radiation heat  12 Elevation (ft) Office: Job No: 10 8 6 4 2 0 70 71 72 73 74 75 76 77 Distance from Center of Sump Fire (ft) 78 79 80 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX G – SPILL CONTAINMENT PLAN DRAWINGS ,.... ' : -· -cr:: ..... 0 '~~ J' '~--J' -' -- SPILL CONTAINllNT BY CURBS. PAVING. AND TRENCHES. (SOLID HEAVY LINE l 0 ..._ Vl u 0 0 - D z - <.:> ~ 0 0 0 0 I 0 "" I > u .... / _ / :' : : : : : : I I 0 0 0 LOCAL CONT ANl(NT AT FLARE DRUMS /~r-------------------------------1 LNG PIPERACK ORAi NS TO TRENCH. TRENCH SLOPED TO SUtf' -- '''..!'' ____________________________ I N l g-i-i!!t-t- ;'.;:; "" "" :::: ""'er:0 .. -i!t- ..... I- NGL BLI II' lllUND BOX DRAINS TO SPILL TRENCH ON EAST SIDE "' N 0 ..; LNG VAPORlZER AREA SLOPES TO TRENCH. r ---------1 -- 0 .,:; ..... Vl ...... <.:> D 0 z cr:: '-----'--------,___ __________ J 0 ..., .,:; ..... <.:> z cr:: ..... ..... LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TO SUtf' O_H_H_H_H_H_H_H_H_H_H_ ,_,,_,__,__ _ _ ,__,__,__,__,__,__,__,_ ___ H_H_H_H_H_H_H_H_H_H_H_n_ --~- z <.:> z ..... 0 "' ..... 0 H H H- 0 111111 ·-· IS51£D PAELIMI ltlllY DO NOT RELEASE Z5 I I I 75 50 I I HID I SCALE• FEET llllU CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION .. DAS IES IES 15JULl5 IS51£D PREL IMI ltlllY DAS IES IES 29JUMl5 IS51£D PAELIMI ltlllY DAS IES IES Z1APRl5 .. I "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA ~= 125 cr:: < z CJ PUGET SOUND ENERGY 0 u < I- I N "' "" "" :::: I- u ..... ~ CJ er: Q. lfl, 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: I TOTE EXISTING PIER r--~~~~~~~-\--~~~~~~~~~~~- ·-··-··-··-·· i : H H ! ! ! TOTE SHIP \ \ TOTE MARSHALL ING YARD \ \ cr:: .... 0 -' 0 ..._ LNG PIPERACK SUfE TO SUll'. \ Vl \ \ \ \ \ \ \ u 0 0 ======================================================================================================================================================================1 z <.:> 0 ~ \., 0 0 0 0 I 0 "" I > u I 0 0 0 I N ;'.;:; "" "" :::: ""'er:0 .. .... I- Vl N 0 ..; .,:; ..... Vl ...... <.:> z cr:: 0 ..., .,:; ..... <.:> z cr:: .... .... z <.:> z .... 0 "' ..... TOTE MARSHALLING YARD .. 0 '··-··- .. _.. _.. __________ .._·-.. -··-··-··- ..-.. ..-··-··-··-.._.._.. __________ .. _.. _.. __________ .._.._.. __________ .. _.. _.. __________ .._.._.. __________ .. _.. _.. __________ .._.._.. __________ .. _.. _.. __________ ..__ 25 D 1111!1 I I I 50 I 75 I SCALE• FEET SPILL CONTAINMENT PLAN BLAIR DOCK (TOTEl TACOMA LNG TACOMA. WA CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ISSILD PREL !Ml MARY DAS IES IES 29JUMl5 ISSILD PRELIMI MARY DAS IES IES !1APRl5 ~= I "' 0 .........::IE N Q.IUI'•• - llllU 100 cr:: < z CJ PUGET SOUND ENERGY 0 u < I- I N "' "" "" :::: I- u .... ~ 0 er: Q. IEVISlll IJIQll! Ot'D iPPD Dll( ..... :J: .\ .\ ·-··-··-··-·· "l'" ·~ -··-··-·c-··-··-··-··-··-··-··-··-··-··-··-··-··-··-· \ \ \ \ \ I .. .. \ \ \ \ \ \ \ ~..\"\ \.~ \ \ \ ..., ·.. . \ \ \ \ \ \ \ \ \ \ ... \ \\ \ \ \ , \ . .\ \ \ \ I \ ...,, \ _)... ..-: . .\ ' \ ' \ ... \c~ \=6 \ :~ '°'lJ, :t=-~ "''" \ \ \\ \ \ . \. \ \ \, ..,. •, \ ..,. \ \ \ \ \ \ \ \ ,.,,..,.....(" : \ \ \ ..;. \ ' \ \. \ \ ..... '•\ cr:: .... 0 \ '\ \ --' 0 ..._ Vl u \ \ DROP IN TRENCH FLOOR TD PREVENT FLOW WEST. \ \. \\ \ 0 \ \ ...\ \ \ \ \' \ \ \ \ \ \ \ \ \ \ \ \ \. \ 0 \\ z <.:> \ 0 ,c~ \r..,., \ ~ 0 0 0 0 \ •. ')_)....o'\,, ,. ,.; \ ¥?. e'C I \ ~=) '.?..\"'''\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 "" I > u \ I \. \ \\ \\ \ -1!1- 0 0 0 I N ;'.;:; \ \ \ \..,, \ ""' \ \ \\ \ \ \ \ \\ \ \ -1!1- \ \ \ \ \ \ \ \ \ \ .. .... \. ~\-'\~ LOCAL CONT ANIENT AT FLARE DRUMS "" "" :::: ""'er:0 I- \ .) ....\ io p ...., _ ~".. a] :J N 0 \ r/ l .,:; ..... Vl \. \ \ l2 "' ..; ...... <.:> z \ ..~ cr:: 0 ..., .........J LNG PIPERACK DRAINS TO TRENCH. TRENCH SLll'ED TO SUMP .,:; ..... <.:> z cr:: .... .... z <.:> z .... 0 "' ..... .. 0 Z5 0 I.·-··-·· I 11111! 75 50 I I HID I SCALE• FEET llllU IS51£D PAELIMI ltlllY CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE DAS llES llES 15JULl5 IS51£D PAEL IMI ltlllY DAS llES llES 29JUMl5 IS51£D PAELIMI ltlllY DAS llES llES Z1APRl5 .. I "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN HYLEBOS DOCK TACOMA LNG TACOMA. WA ~= 125 cr:: < z CJ PUGET SOUND ENERGY 0 u < I- I N "' "" "" :::: I- u .... ~ 0 er: Q. lfl, 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: PLANT llJATH SEE EN.ARGED IM.L DETAIL CIEEllSTIEM !126 IIJI EllW. l .ADIERED TD SIEET PILE FULL HE Ila!T Cf cate:RETE FLIQI c~r f: ~W~l 00 1 IJIEEllSTllUI 961 PVC IATERSTDP UR Elllll.l IN 112' X 8' IELllD STUDS HIJllZOOAI. FLOIJI AT 12' D,C, FULL IE llJU !IDT~ '(tLii81iri tFFfflr.l~T=R' UIC TRElltll. TRiii HlT PI LES, IEMll All! ~Tl IM ll'ENJNG, SEE TRElltll m.lllMGS Fiii DllllEllSllJCS. lllP 21 ¥ERTi CALLl F1UI AlllACE.NT ELDED ST\11 clllSTALLED AFTER EICAYllllJO GllEEllSTREAll !126 CIJI IJIEENSTREM 961 PVC IATIJISTIP ELD llJI lllllTAL CW:l IMl llJTOI HE JGIT IF IDICllETE FLllll 1111 ECllM. l IN AJllRDlllllATE IMTU!IAL TME ll'F: HH PI LE SlllU 19.1CIO LBS HH PILE JOINTS: I ,520 FT FLOIJI llEBNI: 2, 900 LBS IALL REBAR: 4,320 LBS llLOED STlllS: 5GI LBS llATIJISTIP: 112 FT FLllR !Xlmll: 52 CT llALL ClllCIETE: '8 CT llTERSTOP TO THl E~Al.I .ADIERED TO SIEET PILE FULL U\~~~~~SI IDllllllTAI. FLIDI TO IALL JOINT U.BlllT 12 LF R£Q' 0 l WATERSTOP JOINT DETAIL EXPANDED WALL DETAIL IMPOUNDING SUMP PLAN SPILL TREllCH c1YP 2 PUCES I ..... . ~TEIM.LS ' ~ ~ llTEASTOP ~ § Ii' GRID BlLtw PIT 115 I B'EI 10' Liii: EICAYATIOM SEAL SUB • ij C(J(R[TE Siii' FUD! ... PERllUlllT STEEL SHEET PILllli I ~ l!i I SECTION A-A I I I $ 10 1$ I I I llCM.EI FEU zo I 25 I ..il!ia' '2' r - - - - - - - - - - - - - - - - - - - - - - - - - + - - + - - - - - - - - - - - - - - - . + - - - + . . - - 1 - - - - - 1 1 - - - - - l ™ I S lllllDEIF IS 11E - m IF ElllC.1111 lllllU. & IRlll ~Jl:~~·~:Dlt'Hl t-------------------------+--+---------------..+--+.--~---11---~rlll PllPll!E DTIER THiii Ell PUFllllED m.1.1 15 • lllf IS.SUED Fiii ESTlllAI[ Z51M1115 lf.S IOISUll - Cl'D 11'111 DI.I[ l'f l'f I-SS •ITIP -ISSIOl IF CMJ, IT 15111 K $1F IGTI lll:LIKIMI[ Ale JllllMlllEJIT DISCUISUE TO /Hf THiii> - · OAS PROCESS SPILL SUMP PLAN TACOMA LNG TACOMA, WA Ol'al 1(5 - 1(5 1111 PUGET SOUND ENERGY Pmlltl 11111 186512 I 8 .... N i i "i :i TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX H – FIRE THERMAL RADIATION CALCULATIONS & EXCLUSION ZONE DRAWING TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C LNG TANK CONCRETE CONTAINMENT FIRE: THERMAL RADIATION CALCULATIONS LNGFIRE MODEL RESULTS: 135.5 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) 198.57 FLAME BASE HEIGHT (FT) 118.50 TARGET HEIGHT (FT) 0.00 POOL DIAMETER (FT) 135.50 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) FLAME LENGTH (FT) FLAME TILT FROM VERTICAL (DEG) FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 0.02253 203.06 49.90 1.00 60317.21 .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 223.08 . . . . . 6,700 . 259.32 . . . . . 4,000 . 363.59 . . . . . 1,600 . 550.24 . .......................................................................... TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C PROCESS SPILL SUMP FIRE: THERMAL RADIATION CALCULATIONS LNGFIRE MODEL RESULTS: 22.25 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) 198.57 FLAME BASE HEIGHT (FT) 0.00 TARGET HEIGHT (FT) 0.00 POOL DIAMETER (FT) 22.25 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) 0.02154 FLAME LENGTH (FT) 56.28 FLAME TILT FROM VERTICAL (DEG) 61.76 FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 1.47 57273.68 .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 75.24 . . . . . 6,700 . 84.42 . . . . . 4,000 . 97.04 . . . . . 1,600 . 125.66 . .......................................................................... LNGFIRE MODEL RESULTS: 22.25 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) 198.57 FLAME BASE HEIGHT (FT) 0.00 TARGET HEIGHT (FT) 0.00 POOL DIAMETER (FT) 22.25 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) 0.02154 FLAME LENGTH (FT) 56.28 FLAME TILT FROM VERTICAL (DEG) 61.76 FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 1.47 57273.68 .......................................................................... . . THERMAL FLUX TO: . . .......................................................................... . DISTANCE FROM . . . MAXIMUM FLUX . . CENTER OF POOL . HORIZONTAL TARGET . VERTICAL TARGET . TO TARGET . . (FT) . (BTU/FT^2 HR) . (BTU/FT^2 HR) . (BTU/FT^2 HR) . .......................................................................... . 100.00 . 1231 . 3363 . 3581 . . 101.00 . 1163 . 3251 . 3453 . . 102.00 . 1099 . 3144 . 3330 . . 103.00 . 1039 . 3041 . 3214 . . 104.00 . 984 . 2943 . 3103 . . 105.00 . 932 . 2849 . 2997 . . 106.00 . 883 . 2758 . 2896 . . 107.00 . 838 . 2672 . 2800 . . 108.00 . 795 . 2589 . 2708 . . 109.00 . 755 . 2509 . 2620 . .......................................................................... LNGFIRE MODEL RESULTS: 22.25 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) FLAME BASE HEIGHT (FT) 198.57 0.00 TARGET HEIGHT (FT) 10.00 POOL DIAMETER (FT) 22.25 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) 0.02154 FLAME LENGTH (FT) 56.28 FLAME TILT FROM VERTICAL (DEG) 61.76 FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 1.47 57273.68 .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 78.07 . . . . . 6,700 . 84.89 . . . . . 4,000 . 95.25 . . . . . 1,600 . 121.10 . .......................................................................... LNGFIRE MODEL RESULTS: 22.25 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) FLAME BASE HEIGHT (FT) 198.57 0.00 TARGET HEIGHT (FT) 12.00 POOL DIAMETER (FT) 22.25 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) 0.02154 FLAME LENGTH (FT) 56.28 FLAME TILT FROM VERTICAL (DEG) 61.76 FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 1.47 57273.68 .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 78.13 . . . . . 6,700 . 84.58 . . . . . 4,000 . 94.49 . . . . . 1,600 . 119.83 . .......................................................................... LNGFIRE MODEL RESULTS: 22.25 FT DIAMETER CIRCULAR POOL INPUT MOLECULAR WEIGHT 16.62 LNG LIQUID DENSITY (LB/FT^3) 27.32 BOILING TEMPERATURE (R) FLAME BASE HEIGHT (FT) 198.57 0.00 TARGET HEIGHT (FT) 14.00 POOL DIAMETER (FT) 22.25 WIND SPEED (MPH) 15.60 AMBIENT TEMPERATURE (F) 31.95 RELATIVE HUMIDITY (%) 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) 0.02154 FLAME LENGTH (FT) 56.28 FLAME TILT FROM VERTICAL (DEG) 61.76 FLAME DRAG RATIO EFF. EMISSIVE POWER (BTU/FT^2 HR) 1.47 57273.68 .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 78.05 . . . . . 6,700 . 84.02 . . . . . 4,000 . 93.54 . . . . . 1,600 . 118.39 . .......................................................................... TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C TOTE TRANSITION PIT FIRE: THERMAL RADIATION CALCULATIONS LNGFIRE MODEL RESULTS: 14 X 18.86 FT RECTANGULAR POOL INPUT MOLECULAR WEIGHT LNG LIQUID DENSITY (LB/FT^3) BOILING TEMPERATURE (R) FLAME BASE HEIGHT (FT) TARGET HEIGHT (FT) POOL WIDTH (FT) POOL LENGTH (FT) WIND SPEED (MPH) AMBIENT TEMPERATURE (F) RELATIVE HUMIDITY (%) 16.62 27.32 198.57 0.00 0.00 14.00 18.86 15.60 31.95 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) FLAME LENGTH (FT) FLAME TILT FROM VERTICAL (DEG) (FRONT) (SIDE) FLAME DRAG RATIO (FRONT) (SIDE) EFF. EMISSIVE POWER (BTU/FT^2 HR) (FRONT) (SIDE) 0.02253 41.93 63.82 62.37 1.91 1.71 55073.76 57152.41 .......................................................................... . FRONT VIEW . . .......................................................................... . . FEDERAL CODE . . THERMAL FLUX . DISTANCE FROM CENTER OF POOL . . (BTU/FT^2 HR) . (FT) . .......................................................................... . 10,000 . 68.75 . . . . . 6,700 . 75.27 . . . . . 4,000 . 84.65 . . . . . 1,600 . 106.66 . .......................................................................... . SIDE VIEW . . .......................................................................... . 10,000 . 68.00 . . . . . 6,700 . 74.08 . . . . . 4,000 . 83.21 . . . . . 1,600 . 103.48 . .......................................................................... LNGFIRE MODEL RESULTS: 14 X 18.86 FT RECTANGULAR POOL INPUT MOLECULAR WEIGHT LNG LIQUID DENSITY (LB/FT^3) BOILING TEMPERATURE (R) FLAME BASE HEIGHT (FT) TARGET HEIGHT (FT) POOL WIDTH (FT) POOL LENGTH (FT) WIND SPEED (MPH) AMBIENT TEMPERATURE (F) RELATIVE HUMIDITY (%) 16.62 27.32 198.57 0.00 0.00 14.00 18.86 15.60 31.95 54.70 OUTPUT MASS BURNING RATE (LB/FT^2 S) FLAME LENGTH (FT) FLAME TILT FROM VERTICAL (DEG) (FRONT) (SIDE) FLAME DRAG RATIO (FRONT) (SIDE) EFF. EMISSIVE POWER (BTU/FT^2 HR) (FRONT) (SIDE) 0.02253 41.93 63.82 62.37 1.91 1.71 55073.76 57152.41 .......................................................................... . FRONT VIEW . THERMAL FLUX TO: . . .......................................................................... . DISTANCE FROM . . . MAXIMUM FLUX . . CENTER OF POOL . HORIZONTAL TARGET . VERTICAL TARGET . TO TARGET . . (FT) . (BTU/FT^2 HR) . (BTU/FT^2 HR) . (BTU/FT^2 HR) . .......................................................................... . 85.00 . 1253 . 3729 . 3934 . . 86.00 . 1160 . 3559 . 3743 . . 87.00 . 1074 . 3398 . 3564 . . 88.00 . 997 . 3247 . 3396 . . 89.00 . 926 . 3105 . 3239 . . 90.00 . 861 . 2971 . 3093 . . 91.00 . 802 . 2844 . 2955 . . 92.00 . 748 . 2725 . 2826 . . 93.00 . 699 . 2613 . 2705 . . 94.00 . 653 . 2507 . 2590 . .......................................................................... . SIDE VIEW . . . . .......................................................................... . 85.00 . 1292 . 3396 . 3633 . . 86.00 . 1192 . 3237 . 3449 . . 87.00 . 1101 . 3087 . 3277 . . 88.00 . 1019 . 2946 . 3117 . . 89.00 . 944 . 2813 . 2967 . . 90.00 . 876 . 2688 . 2827 . . 91.00 . 814 . 2570 . 2696 . . 92.00 . 757 . 2459 . 2573 . . 93.00 . 705 . 2355 . 2458 . . 94.00 . 657 . 2256 . 2350 . .......................................................................... TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C THERMAL RADIATION EXCLUSION ZONE DRAWING 186512-000-SE-01-000011 Rev. D Thermal Exclusion Zone Plan – Main LNG Plant with Blair Dock (TOTE) and Hylebos Dock PROPERTY LINE - 1.600 75,. I I: PROPERTY LINE XXI ?25-7 FT RADIUS ?EXISTING 3 I I i Jo EXISTING RAILROADS 10.000 I 2 RN - 73TOTE PROPERTY LNG PIPELINE - ?33 1520(7) i a 6 . RECEIVING PIT LNG PIPELINE SENDUUT .I 3.000 I I Ava 105 FT RADIUS 1.600 - TANK I I 2 106.7 FT RADIUS 106.? FT RADIUS ll - 3 I9 3.000 3.000 -- I I 91 FT RADIUS 91 FT RADllf/ I a: I 10.000 10.000 :1 I I :5 68.8 FT RADIUS 68.8 FT RADIUS I 5- xwx+m I 5 I ,i D: 51251.600 I 550.3 FT RADIUS I 3 I I .9PROPERTY LINE I i I i 11TH ST 3 i i (ILSCALE: FEET - "0?5 THERMAL EXCLUSION ZONE PLAN - MAIN NO ANT WITH AIR DOCK - - - - - - WW rm I 2 I 10.4 Iv AND HYLEBOS DOCK . ISSUED PRELIMINARY DAS MES Its 15JUL15 II I m? 5. IN a ISSUED PRELIMINARY DAS GCB MES 16JUN15 - TACOMA NG THIS DOCUMENT IS THE PROPERTY OF CHICAGO BRIDGE IRON COWANY IT MAY CONTAIN INFORMATION DESCRIBING TECHNOLOGY OIINED BY CBM AND TACOMA WA r. CONTAINS CRITICA ENERGY INFRASTR CT RE INFORMATION 3 55?? ?5 HIT 8 . SOUND ENERGY '6 D0 A ISSUED PRELIMINARY DAS GCB ES BUTH DELIBERATE AND DISCLEISURE TO ANY THIRD PARTY. Fm. REFERENCE DRAUINGS NO. REVISION DRAIN APPD DATE DAS GCB MES IDATE: 13APR15 ISCALE: AS PROJECT N0: 1 8651 2 -00001 1 v: I For: CIS-HO-OO-FI-OZIM Cal ANSI DAN TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX I – LNG RELEASES – SPILL SCENARIO CASE SUMMARY & LOCATIONS Spill Scenario Summaries for FLACS Revision: Date: A Job No: Doc No. 20-Apr-2015 Made By: JG Checked: GCB Project: Client: Office: PSE Location: Puget Sound Energy Tacoma LNG Tacoma, WA Calc No. Sheet Case Study Properties and Spill Rate Liquid Fraction Temperature ( °F) Pressure (psia) Line Break Size (in) Spill Rate (lb/hr) Piping Item No. Case 1 ‐ LNG Pipe  Rupture  at Tote  Bunkering  (TOTE dock side) Case 2 & 3‐ LNG  Pipe Rupture to  Tote Bunkering  (facility side) Case 4 ‐ LNG Pipe  Rupture at Truck  Loading Case 5 ‐ Sendout   Header Pipe  Rupture at Grade 1.0 ‐258.5 98.5 3.33 598,161 137 1.0 ‐258.7 114.5 3.33 665,710 109 1.0 ‐258.7 118.5 1.00 61,123 110 1.0 ‐258.7 118.5 3.33 665,710 107 NOTES 1. Average annual temperature, 50.9°F. 2. Spill locations are denoted on attached Site Plan 3. Tank coordinates are approximately N 47.2768  W 122.4004 Case 7, 8 &9 ‐ LNG  Case 6 ‐  Refrigerated LNG  Pipe Rupture  at  Rundown Line to  HYLEBOS (Future) Tank Catastropic  Rupture   1.0 1.0 ‐255.0 ‐259.0 18.8 18.2 3.00 8.00 49,988 711,003 25 113 186512 186512-000-PR-CL-05001 1 of 1 Cas Loc Case 6 Spill Location Case 7 Locatio 0 = "' Case 5 Spill Location N~TH ~ PROPERTY LINE "= EXISTING ROAD ~ -8"' ~ ~ EXISTING RAILROADS " TOTE PRCPERTY Case 3 Spill Location Case 4 Spill Location PRIPOSEO SHIP FUELING PLATFORM ITBOI Case 2 Spill Location D D CIJHRll BUILDING Case 1 Spill Location ELECTRICAL SUBSTATION '-··-··-··-··-·· I·-·-·cf'•. ,. " D [~f ... I ·-·-·i ~~-, •O • i U.J PRETREATKNT UNIT KTERING Ii . I H'l'LEBOS BRIDGE E 11TH ST . ______ fl__ ··-· __Q .. =-··-··-··-··-··-··-··-··-··-··-·· 0 ··-··D.·-··-··-··-··-··-··-··-··-··-·· I 111 ii "'I zoo I 300 I .., "'I I SCALE: FEET SITE PLAN - MAIN LNG PLANT WITH BLAIR DOCK AND HYLEBOS DOCK CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE ~ TACOMA LNG 1--------------------------+--+---------------+--+--+---l----jJVI~~~ l~N,~"'fi'.J.RT.tlr.1i'l~~clrt..~'::A ~~~ ~CB&l"J. TACOMA I WA 5 1--------------------------+---+-"-""-'-'-~-"-"-~-"------------<-'-"--+-~-'-+-~-'-+--"-"'-'-'~r~~~ ~.:t-~=~~~ rs,i.lloi1r'"~~T1---------------------+ ~ ISSl£D FIJI REVIEW DAS IES IES Z4FEB15 BY EXPRESS IRITTEN 04 IJ CB&I. IT IS TD BE SAFEOOARDED AGAINST ffll= PUGET SOUND ENERGY -:. 1--------------------------t--+---------------+--+--t--f----j"'='"-'°'"-"""""T'"'-''"'=I TEllT DISCLOSlllE TO ANT Tilllll PARTY. ......, ~ 0 REFEllEIU. IUl'INGS ... llEVISllll lllAIN Cll'D ,.. Billi 24FEB15 SCM.E1 AS SHOIN ""'"m•186512 m•OOO-CV-01-000003 • 8 I TOTE EXISTING PIER r--~~~~~~~-\--~~~~~~~~~~~- ·-··-··-··-·· i : H H ! ! ! r; \ .... .... .... \ ...; TOTE MARSHALL ING YARD \ \ a:: w c -' \ 0 "- \ Vl u D \ c \ \ spill path to impoundment TOTE SHIP \ \ \ zt!) \., c N 0 00 0 I co 0 I LNG PIPERACK SLCfE TO TRENCH. TRENCH SLOPES TO SUfl'. > uI 0 0 0 I "' u; "':::::co t!) z Q_ Q_ ...... 0 ..; .,:; ..... Vl t!) Case 1 Spill: Leak in TOTE LNG loading line on dock z •....a:: c ..., -==============================================================================================================================================================================j .,:; ..... t!) CONT AINIENT SUit' z a:: w w :z t!) :z w TOTE MARSHALLING YARD 0 "' ..... c a:: '··-··----------··-··-··---- ·----··-··-··------ ---··-··-··----------··-··-··----------··-··-··----------··-··-··----------··-··-··----------··-··-··----------··-··-··----------··-··-··----------··-··-··----· 0 25 1111!1 I I I 50 I 75 I SCALE• FEET I CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN BLAIR DOCK (TOTEl TACOMA LNG TACOMA. WA D u < I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 100 • ~ 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. Case 2 Spill: Leak in TOTE LNG loading line inside transition pit t '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 I 75 50 I I 100 I SCALE• FEET 115 I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Z5 I I 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: SPILL CONTAINllNT BY GRAD I NG, CURBS, PAVING, AND TRENCHES. CDASHEO HEAVY LINE l SP ILL CONTAINllNT SUll' SPILL CONTAINIENT BY CURBS, ---......._ PAVING. AND TRENCHES. "CSOL!D HEAVY LINE l ,.... 11 I ''~- -·J' '~ •• J' r; .... .... .... ,.... - ' ' ...;. a:: w - Q ..J D "Vl u D Q zc.:> ~ spill path to impoundment 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. Case 3 Spill: Leak in TOTE LNG loading line at end of pipe rack t '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 I 75 50 I I 100 I SCALE• FEET 115 I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE Z5 I I 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: SPILL CONTAINllNT BY GRAD I NG, CURBS, PAVING, AND TRENCHES. CDASHEO HEAVY LINE l SP ILL CONTAINllNT SUll' SPILL CONTAINIENT BY CURBS, ---......._ PAVING. AND TRENCHES. "CSOL!D HEAVY LINE l ,.... 11 I ''~- -·J' .... .... .... ,.... - ' ' ...;. a:: w - Q ..J D "Vl u D Q zc.:> spill path to impoundment '~ •• J' r; ~ 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 Case 4 Spill: Leak in LNG loading line at truck station ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· t t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 Z5 I I I 75 50 I I 100 I SCALE• FEET I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: spill path to impoundment Cas Lea mai SPILL CONTAINllNT BY GRAD I NG, CURBS, PAVING, AND TRENCHES. CDASHEO HEAVY LINE l SP ILL CONTAINllNT SUll' SPILL CONTAINIENT BY CURBS, ---......._ PAVING. AND TRENCHES. "CSOL!D HEAVY LINE l ,.... 11 I ''~- -·J' '~ •• J' r; .... .... .... ,.... - ' ' ...;. a:: w - Q ..J D "Vl u D Q zc.:> ~ 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. t t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 Z5 I I I 75 50 I I 100 I SCALE• FEET I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: SPILL CONTAINIENT BY CURBS, ---......._ PAVING. AND TRENCHES. "CSOL!D HEAVY LINE l ,.... 11 I ''~- -·J' '~ •• J' spill path to impoundment SPILL CONTAINllNT BY GRAD I NG, CURBS, PAVING, AND TRENCHES. CDASHEO HEAVY LINE l SP ILL CONTAINllNT SUll' r; .... .... .... ,.... - ' ' ...;. a:: w - Q ..J D "Vl u D Q zc.:> ~ 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. t t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 Z5 I I I 75 50 I I 100 I SCALE• FEET I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: SPILL CONTAINIENT BY CURBS, ---......._ PAVING. AND TRENCHES. "CSOL!D HEAVY LINE l ,.... 11 I ''~- -·J' '~ •• J' spill path to impoundment SPILL CONTAINllNT BY GRAD I NG, CURBS, PAVING, AND TRENCHES. CDASHEO HEAVY LINE l SP ILL CONTAINllNT SUll' r; .... .... .... ,.... - ' ' ...;. a:: w - Q ..J D "Vl u D Q zc.:> ~ 0 0 0 0 I co 0 I > '-' I 0 0 0 I "' u; "':::::co c.:> z - D Q_ D Q_ ...... 0 ..; - LNG VAPIJl I ZER AREA SLOPES TO TRENCH. t t .,:; ..... Vl LNG LIQUE ACT ION AR SLIJ'ES TO TRENCH c.:> z •....a:: 0 Q ..., 000 000 LNG PIPERACK DRAINS TO TRENCH. TRENCH SLOPED TD SUiit' .,:; ..... c.:> z a:: w w :z c.:> :z w '··-·------------·-··-·------- ----·-·· ·------------·-··-·---------- -·-··-·------------·-··-·- -- -------· o . _11&=-o=l'llL .. 0 "' ..... Q .-------.-------- .... •• I ··-··-··-··-J·-· a:: .... 0 111111 Z5 I I I 75 50 I I 100 I SCALE• FEET I •z CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN MAIN LNG PLANT TACOMA LNG TACOMA. WA D '-' .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 1551.ED PRELIMINARY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 IJIQll! Ot'D iPPD Dll( ..... :J: ,....---··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ! i .\ ·-·---------- "l'" ·~ -------·c--------·-··-·------------------------------ \, \ \ \ \ \ \ ' . .. \ ! \.~ \ \ I ~ -·········································································----·-- '"'-., __________ __i \ ..., "'-.\ . .., ', \ \ \ \ \ \ \ \ \ \ ......~ I \ \, \ \ \ ~..\"\ 1---------------------------------------------------------------------------------------------------------------------· \ \\ \ \ .\ ' \ \\ \ \ \ .)... .-: \ ... \c~ \ . .\ ' \ ' , \ \ \ \=6 .."' \ ' \ :~ '°'lJ, :t=-~ \.,,..,.....(" \ \ "''" \ \ \\ \ \ ', \ \ \ \ \ \ . \' \ \ -8-8- \ \ ...."" .... .... '•\ ...;. \ \ a:: w '\ ' \ ********** Q ..J D "- \ -8-8- ~ ~ ~ ~ ~rn \ / SLOPED TO SUlf' ·---------------------------------------------------------------------------------------LNG PIPERACK DRAINS TO TRENCH. TRENCH / \ '•\ \ \ \ \ <" ,c~ \r..,., \ zt!) Q \ ,.; 0 \ •. ¥?. e'C ~=) ~ 00 \ \_?..\"''"\ 0 I \ \ \ \ \ \ \ \ \ \ \ \ \ '• co 0 I \ > uI •••• / _.••...-- ..........,,......~"""' ---- ,..,..... \ \ \\ \ 0 0 0 \. \\ \ \ \..,, I \ "' u; \ ~\-"\~ SPILL CONTAINMENT BY CURBS. PAVING. AND TRENCHES. (Sil ID HEAVY LINEl ""' "':::::co t!) \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ ' z \. \ \ \\ \ \ + l' I \ ')_). . o'\,, . _/ /~".'.'---------------------------------------------------------------------------------------~ / Q \ \ \ \ \ \ spill path to impoundment LOCAL CONT ANlf:NT AT FLARE DRUMS ----~- u D \ \ \' \ \ Case 8 Spill: Leak in LNG loading line to Hylebos 1-1 Vl '\.. \ Q_ Q_ \ ) ....\ io ~~a] .. p l2 ....,_.........=Jlr/ ...... 0 \ ..; .,:; ..... Vl \. \ t!) z \ •....a:: ..~ Q "" .,:; ..... t!) z a:: w w :z t!) :z w 0 "' ..... Q a:: .... Z5 0 I.·-·---- I 111111 75 50 I I 100 I SCALE• FEET I CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN HYLEBOS DOCK TACOMA LNG TACOMA. WA D u .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 •z 1551.ED PREL!MllWIY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 Dll( ..... :J: spill path to impoundment ,....---··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··-··- ! i .\ ·-·---------- "l'" ·~ -------·c--------·-··-·------------------------------ \, \ \ \ \ \ \ ' . .. \ ! \.~ \ \ I ~ -·········································································----·-- '"'-., __________ __i \ ..., "'-.\ . .., ', \ \ \ \ \ \ \ \ \ \ ......~ I \ \, \ \ \ ~..\"\ 1---------------------------------------------------------------------------------------------------------------------· \ \\ \ \ .\ ' \ \\ \ \ \ .)... .-: \ ... \c~ \ . .\ ' \ ' , \ \ \ \=6 .."' \ ' \ :~ '°'lJ, :t=-~ \.,,..,.....(" \ \ "''" \ \ \\ \ \ ', \ \ \ \ \ \ . \' \ \ -8-8- \ \ ...."" .... .... '•\ ...;. \ \ a:: w '\ ' \ ********** Q ..J D "- \ -8-8- 1-1 ~ ~ ~ ~ ~rn \ Vl '\.. u D Q \ \ '•\ \ \ \ \ \ \ \' \ \ \ \ \ \ \ \ \ LOCAL CONT ANlf:NT AT FLARE DRUMS zt!) \ \r..,., ,.; 0 \ •. ')_). . o'\,, . <" ,c~ Q ¥?. e'C ~=) ~ 00 \ \_?..\"''"\ 0 I \ \ \ \ \ \ \ \ \ \ \ \ \ '• / ----~- SLOPED TO SUlf' ·---------------------------------------------------------------------------------------LNG PIPERACK DRAINS TO TRENCH. TRENCH / l' I I \ > uI •••• / _.••...-- ..........,,......~"""' ---- ,..,..... \ \ \ 0 0 0 \. \\ \ \ \..,, I \ "' u; \ ~\-"\~ SPILL CONTAINMENT BY CURBS. PAVING. AND TRENCHES. (Sil ID HEAVY LINEl ""' "':::::co t!) \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ ' z \. \ \ \\ \ \ + / 0 \\ _/ /~".'.'---------------------------------------------------------------------------------------~ co \ Q_ Q_ \ ) ....\ io ~~a] .. p l2 ....,_.........=Jlr/ ...... 0 \ ..; .,:; ..... Vl \. \ t!) z \ •....a:: ..~ Q "" .,:; ..... t!) z a:: w w :z t!) :z w 0 "' ..... Q a:: .... Z5 0 I.·-·---- I 111111 75 50 I I 100 I SCALE• FEET I CJ "' 0 .........::IE N Q.IUI'•• - SPILL CONTAINMENT PLAN HYLEBOS DOCK TACOMA LNG TACOMA. WA D u .... I- I N "' co "' ::::: I- u CONTAINS CRITICAL ENERGY INFRASTRUCTURE INFORMATION DO NOT RELEASE 115 •z 1551.ED PREL!MllWIY DAS IU IES Z1APRl5 ~· PUGET SOUND ENERGY w ~ 0 er: Q_ 11115111 Dll( ..... :J: US GexCon US Inc. 4833 Rugby Avenue Suite 100 Bethesda, MD 20814 telephone +1 301-915-9940 facsimile +1 301-656-2953 www.GexConUS.com September 17, 2015 Matt Stobart Chicago Bridge & Iron 14105 S. Route 59 Plainfield, IL 60544-8984 Subject: Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock. Dear Mr. Stobart: GexCon was requested by Chicago Bridge & Iron (CB&I) to evaluate an LNG spill for the Puget Sound Energy (PSE) Tacoma site using the latest layout for the Totem Ocean Trailer Express (TOTE) dock under two conditions: high tide and low tide. The gas dispersion simulations used the geometry models shown in Figure 1 and Figure 2. In addition to determining if the flammable vapor cloud extends beyond the property line that can be built upon, this analysis determined if the cloud would encroach on the ship trailer loading ramp to the north. This is a path to egress in case of emergency and should remain passable in the event of a spill. The modeling considered the same ambient conditions and trench and sump properties described in the report GexCon-15-P515018-R-1_rev00. The spill parameters are summarized in Table 1. The complete list of simulations performed is given in Table 2. Figure 1. Tacoma site FLACS geometry, high tide. US Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 2 of 14 Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Figure 2. Tacoma site FLACS geometry, low tide. Table 1. Scenario parameters for Tacoma. Location Spill Flow Rate [kg/s] Duration [s] TOTE dock 75.4 600 Table 2. FLACS vapor dispersion simulations for the LNG spill at the TOTE dock. Run # Spill location Wind Speed [m/s] Wind Direction [from] 115911 115912 115913 115914 115915 115916 115917 115918 115921 115922 TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide 1 1 1 1 1 1 1 1 2 2 NE E SE S SW W NW N NE E US Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 3 of 14 Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Run # Spill location Wind Speed [m/s] Wind Direction [from] 115923 115924 115925 115926 115927 115928 116911 116912 116913 116914 116915 116916 116917 116918 116921 116922 116923 116924 116925 116926 116927 116928 TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: high tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide TOTE dock: low tide 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 SE S SW W NW N NE E SE S SW W NW N NE E SE S SW W NW N Figure 3 shows the layout of the 10-ft tall vapor barrier included in proximity of the TOTE sump and along the northern perimeter of the TOTE dock, in order to control the dispersion of the flammable LNG vapor clouds. The red line identifies an impermeable barrier while the green line represents a 10% porous barrier. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 4 of 14 Figure 3. Vapor barrier layout. The physical gas concentration limit below which ignition may not occur is known as the Lower Flammability Limit (LFL). However, flammable gas dispersion hazard analyses typically include a safety factor of 2, to account for modeling assumptions and other uncertainties. In all simulations, the base grid spacing in the horizontal direction was set to 5 m. Horizontal and vertical grid refinement to a minimum of approximately 0.4 m was applied within the trenches; grid stretching was performed outside the region of interest for vapor cloud dispersion. All grid stretching and transitions were performed in compliance with FLACS modelling guidelines and consistent with the FLACS validation work. Simulation Results Figure 4 through Figure 7 show the 2D footprint of the LNG vapor clouds (at or above the ½-LFL concentration) for the simulations listed in Table 2; the footprint represents the cumulative overlay of the cloud position at each output time (10 seconds); the release location is identified by a red star. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 5 of 14 Figure 4. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, high tide, with wind at 1 m/s from several directions. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 6 of 14 Figure 5. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, high tide, with wind at 2 m/s from several directions. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 7 of 14 Figure 6. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, low tide, with wind at 1 m/s from several directions. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 8 of 14 Figure 7. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, low tide, with wind at 2 m/s from several directions. Figure 4 through Figure 7 show the maximum 2D footprint of the LNG vapor clouds between sea level to the ceiling of the computational domain; these figures do not show whether the ½-LFL clouds reach the top of the trailer loading ramp (situated north of the TOTE dock) or if they spread beneath the trailer loading ramp. Therefore, 3D images of the LNG vapor clouds are shown in Figure 8 through Figure 12. Each figure caption specifies the geometry, the wind speed and the wind direction used in the simulation represented. The 3D figures show that the ½-LFL clouds spread below the trailer loading ramp without reaching above its surface. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 9 of 14 Trailer loading ramp TOTE dock Figure 8. 3D vapor clouds for an LNG spill into the TOTE dock trenches, high tide, with wind at 1 m/s from the south. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 10 of 14 Trailer loading ramp TOTE dock Figure 9. 3D vapor clouds for an LNG spill into the TOTE dock trenches, high tide, with wind at 1 m/s from the west. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 11 of 14 Trailer loading ramp TOTE dock Figure 10. 3D vapor clouds for an LNG spill into the TOTE dock trenches, high tide, with wind at 2 m/s from the west. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Trailer loading ramp Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 12 of 14 TOTE dock Figure 11. 3D vapor clouds for an LNG spill into the TOTE dock trenches, low tide, with wind at 1 m/s from the south. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report TOTE dock Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 13 of 14 Trailer loading ramp Figure 12. 3D vapor clouds for an LNG spill into the TOTE dock trenches, low tide, with wind at 2 m/s from the west. Analysis of the Results The flammable gas clouds from an LNG spill scenario at the TOTE dock were evaluated for the Tacoma site. As Figure 4 through Figure 12 indicate, the vapor clouds from LNG spill do not reach the top of the trailer loading ramp and remain within the property boundaries. If you have any questions or comments, please do not hesitate to contact me at (301) 915-9925 or fgavelli@gexcon.com. Best regards, Filippo Gavelli, Ph.D., P.E. US Flammable Gas Dispersion Analysis for the Tacoma LNG Site at the TOTE dock Project Report Ref. no.: GexCon-15-P515018-L-1 Rev. no: 00 Date: 9/17/2015 Page 14 of 14 Revision Rev. Date Author Checked by Approved by Reason for revision 00 9/17/2015 Filippo Gavelli, Ph.D., PE Claudio Marsegan Scott Davis, Ph.D., PE Report issued to client Disclaimer The study presented in this report is intended for use by Chigaco Bridge & Iron (CB&I) and Puget Sound Energy (PSE). The scope of the study was strictly limited to performing computer modeling of the potential consequences from release scenarios specified by CB&I. The study used approved and/or accepted modeling tools and safety factors. This study did not address the likelihood of occurrence of any of the simulated scenarios. GexCon has not visited the proposed site of the PSE Tacoma facility. GexCon has also not performed an independent evaluation of the processes and of the possible releases that may occur at the PSE Tacoma facility. CB&I and PSE agree that in no event shall GexCon, its officers, employees, or agents be liable for any direct, indirect, incidental, special, punitive or consequential damages arising out of or relating in any way to any opinions, conclusions and/or recommendations contained in this report. CB&I and PSE assume full and complete responsibility for all uses and applications of this report, and agrees to indemnify and hold harmless GexCon against and from any and all liability, damages, losses, claims, demands, actions, causes of action, and costs including attorneys’ fees and expenses arising out of any such use or application. Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 1 of 26 PROJECT REPORT Tacoma LNG – Dispersion Modeling Chicago Bridge & Iron Client Mike Montgomery Author(s) Filippo Gavelli The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 2 of 26 Tacoma LNG – Dispersion Modeling Project Report Document Info Author(s) Filippo Gavelli Title Tacoma LNG – Dispersion Modeling Executive Summary GexCon US, Inc. (GexCon) was contacted by Chicago Bridge & Iron (CB&I) to perform a hazard analysis for the Tacoma LNG facility to be located on the port of Tacoma, Washington. This report presents the results of the following hazard analyses:   Flammable vapor dispersion exclusion zones for design LNG spills into the liquefaction facility trenches and sumps; Flammable vapor dispersion exclusion zones for a single NG vapor release within the facility. The vapor dispersion simulations were performed using GexCon’s CFD modeling software FLACS, version 9.1. FLACS was approved by the U.S. DOT as an alternate model for vapor dispersion under 49 CFR 193.2059 on October 7, 2011. The results of the hazard analysis presented in this report are as follows:   The footprint of the vapor dispersion cloud (to ½-LFL) for the design LNG spills remains within the property boundaries; The footprint of the vapor dispersion cloud (to ½-LFL) for a single NG vapor release does not extend across a property line that may be built upon. Project Info Client Clients ref. Chicago Bridge & Iron Mike Montgomery GexCon Project No. GexCon Project Name P515018 Tacoma LNG – Dispersion Modeling Revision Rev. Date Author Checked by Approved by Reason for revision 00 7/16/15 Filippo Gavelli, Ph.D., PE Claudio Marsegan Scott Davis, Ph.D., PE Report issued to client The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 3 of 26 Disclaimer The study presented in this report is intended for use by Chicago Bridge & Iron and Puget Sound Energy (PSE) for regulatory purposes. The scope of the study was strictly limited to performing computer modeling of the potential consequences from accidental scenarios specified by Chicago Bridge & Iron. The study used approved and/or accepted modeling tools and applied safety factors to the results as specified by the regulatory bodies. In compliance with regulations, this study did not address the likelihood of occurrence of any of the simulated scenarios. GexCon has not visited the proposed site of the Tacoma LNG facility. GexCon has also not performed an independent evaluation of the processes and of the possible accidental releases that may occur at the Tacoma LNG facility. Chicago Bridge & Iron agrees that in no event shall GexCon, its officers, employees, or agents be liable for any direct, indirect, incidental, special, punitive or consequential damages arising out of or relating in any way to any opinions, conclusions and/or recommendations contained in this report. Chicago Bridge & Iron assumes full and complete responsibility for all uses and applications of this report, and agrees to indemnify and hold harmless GexCon against and from any and all liability, damages, losses, claims, demands, actions, causes of action, and costs including attorneys’ fees and expenses arising out of any such use or application. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 4 of 26 Table of Contents Disclaimer ............................................................................................................................................... 3 1 Background ................................................................................................................................ 5 2 Tacoma LNG facility................................................................................................................... 6 2.1 Ambient conditions ....................................................................................................................... 9 2.2 Vapor Fences ............................................................................................................................... 9 3 Vapor Dispersion Hazard Analysis ........................................................................................ 11 3.1 LNG Spills .................................................................................................................................. 11 3.2 Vapor Jet Releases .................................................................................................................... 23 4 3.2.1 Accidental Single Leakage Source ............................................................................ 23 3.2.2 Vapor Dispersion Simulations ................................................................................... 23 Conclusions .............................................................................................................................. 26 The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report 1 Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 5 of 26 Background GexCon US, Inc. (GexCon) was contacted by Chicago Bridge & Iron (CB&I) to perform a hazard analysis for the Tacoma LNG facility to be located on the port of Tacoma, Washington. This report presents the results of the following hazard analyses:   Flammable vapor dispersion exclusion zones for design LNG spills into the liquefaction facility trenches and sumps; Flammable vapor dispersion exclusion zones for a single NG vapor release within the facility. The vapor dispersion simulations were performed using GexCon’s CFD modeling software FLACS, version 9.1. FLACS was approved by the U.S. DOT as an alternate model for vapor dispersion under 49 CFR 193.2059 on October 7, 2011. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report 2 Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 6 of 26 Tacoma LNG facility Puget Sound Energy (PSE) is planning to build and operate an LNG liquefaction plant (Tacoma LNG) in Tacoma, Washington, as shown in Figure 1. The Tacoma LNG facility includes a single LNG liquefaction unit, one LNG storage tank and associated facilities and equipment. The FLACS geometry model of the area is shown in Figure 2. Figure 1. Plan view of the Tacoma LNG facility. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 7 of 26 Figure 2. FLACS model of the facility. The project will include an LNG spill conveyance system, consisting of trenches running alongside all piping, designed to collect liquid spills and direct them to different sumps. The trench and sump layout is shown in Figure 3. The sumps are highlighted in orange while the trenches are highlighted in different colors based on their minimum depth; all trenches are 2 ft wide. Yellow arrows show the direction in which the liquid flows. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 8 of 26 Figure 3. Trenches (in purple, blue, red and green) and sumps (in orange) layout. The two Totem Ocean Trailer Express (TOTE) sumps (located on the western end of the underground pipeline leading to the ship fueling platform and near the western LNG pipeline sendout pit on the facility property) will measure 18.86 ft by 14.6 ft by 20 ft deep; the process sump (near the LNG tank) will measure 22.25 ft (diameter) by 21 ft deep; the HYLEBOS sump (located on the HYLEBOS dock) will measure 22.25 ft (diameter) by 15 ft deep. All trenches and sumps will be constructed of regular concrete, whose properties are listed in Table 1. Table 1. Thermophysical properties of concrete for LNG vapor dispersion calculations. Material Thermal Conductivity [W/(m∙K)] Thermal Diffusivity [m2/s] Regular Concrete 1.1 10-6 The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 9 of 26 Tacoma LNG – Dispersion Modeling Project Report 2.1 Ambient conditions Ambient conditions for vapor dispersion hazard calculations are specified in federal regulations. The values used in this analysis are consistent with regulatory requirements in 49 CFR § 193.2059 and are summarized in Table 2. Table 2. Ambient parameters. 2.2 Parameter Value Ambient Temperature Relative Humidity Wind Speed Atmospheric Stability Class Ground Roughness 50.9°F (10.5°C) 50% 1 various2 F 0.03 m Vapor Fences Figure 2 shows the FLACS 3D geometry model of the Tacoma LNG facility. A vapor barrier was included in proximity of the piperack, in order to control the dispersion of the flammable NG vapor clouds (Figure 4). Other vapor barriers were placed at strategic locations, as shown in Figure 5. All barriers are 8 ft tall and permeable (10% porosity), based on typical slatted chain link fencing. Figure 4. Vapor barrier for the NG vapor dispersion simulations. 1 2 The effect of moisture condensation is not included in the FLACS vapor dispersion simulations. The analysis includes sensitivity to wind speed. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 10 of 26 Figure 5. Vapor barriers for the Tacoma LNG facility. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 11 of 26 3 Vapor Dispersion Hazard Analysis 3.1 LNG Spills Federal regulations (49 CFR § 193.2059) require that the flammable vapor dispersion distances (to 50% of the lower flammable limit, ½-LFL) be calculated for a design spill into an LNG impoundment. In this analysis, GexCon used the CFD model FLACS to calculate the LNG pool spread, vaporization and vapor cloud dispersion from liquefied gas spills into trenches and the TOTE sump (facility side). The LNG spill parameters were provided by CB&I and are summarized in Table 3. All simulations assumed a constant release rate for a duration of 10 minutes. Figure 6 shows the location of each spill, indicated by a red star and the correspondent scenario number. The complete list of simulations performed is given in Table 4. Table 3. Release parameters for LNG spills into trenches and the TOTE sump (facility side). Scenario # Spill location Spill Flow Rate [kg/s] 1 2 3 4 5 6 7 8 9 TOTE dock TOTE pipeline sump (facility side) Western piperack Truck loading Header pipe Rundown line HYLEBOS piperack (facility side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS dock 75.4 83.9 83.9 7.7 83.9 6.3 89.6 89.6 89.6 Figure 6. Location of each spill, indicated by a red star and the correspondent scenario number. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 12 of 26 Tacoma LNG – Dispersion Modeling Project Report Table 4. FLACS vapor dispersion simulations for LNG spills into trenches and the TOTE sump. Scenario # Run # Spill location Wind Speed [m/s] Wind Direction [from] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 111911 111912 111913 111914 111918 111921 111922 111923 111924 111928 121911 121912 121913 121914 121918 121921 121922 121923 121924 121928 131911 131912 131913 131914 131918 131921 131922 131923 131924 131928 140911 140912 140913 140914 140915 140916 140921 140922 140923 140924 140925 140926 151912 151914 151916 151918 151922 151924 151926 151928 161912 161914 161916 TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE dock TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) TOTE pipeline sump (facility side) Western piperack Western piperack Western piperack Western piperack Western piperack Western piperack Western piperack Western piperack Western piperack Western piperack Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Truck loading Header pipe Header pipe Header pipe Header pipe Header pipe Header pipe Header pipe Header pipe Rundown line Rundown line Rundown line 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 NE E SE S N NE E SE S N NE E SE S N NE E SE S N NE E SE S N NE E SE S N NE E SE S SW W NE E SE S SW W E S W N E S W N E S W The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 13 of 26 Tacoma LNG – Dispersion Modeling Project Report Scenario # Run # Spill location Wind Speed [m/s] Wind Direction [from] 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 161918 161922 161924 161926 161928 171912 171914 171916 171918 171922 171924 171926 171928 181914 181915 181916 181917 181918 181924 181925 181926 181927 181928 190914 190915 190916 190917 190918 190924 190925 190926 190927 190928 Rundown line Rundown line Rundown line Rundown line Rundown line HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (facility side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS piperack (HYLEBOS dock side) HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock HYLEBOS dock 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 N E S W N E S W N E S W N S SW W NW N S SW W NW N S SW W NW N S SW W NW N In all simulations, the base grid spacing in the horizontal direction was set to 5 m. Horizontal and vertical grid refinement to a minimum of approximately 0.3 m was applied within the trenches; grid stretching was performed outside the region of interest for vapor cloud dispersion. All grid stretching and transitions were performed in compliance with FLACS modelling guidelines and consistent with the FLACS validation work. Simulation Results Figure 7 through Figure 24 show the footprint of the LNG vapor clouds (at or above the ½-LFL concentration) for the simulations listed in Table 4; the footprint represents the cumulative overlay of the cloud position at each output time; the release location is identified by a red star. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 14 of 26 Figure 7. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, with wind at 1 m/s from several directions. Figure 8. Footprint of the vapor clouds for an LNG spill into the TOTE dock trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 15 of 26 Figure 9. Footprint of the vapor clouds for an LNG spill into the TOTE sump (facility side), with wind at 1 m/s from several directions. Figure 10. Footprint of the vapor clouds for an LNG spill into the TOTE sump (facility side), with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 16 of 26 Figure 11. Footprint of the vapor clouds for an LNG spill into the western piperack trenches, with wind at 1 m/s from several directions. Figure 12. Footprint of the vapor clouds for an LNG spill into the western piperack trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 17 of 26 Figure 13. Footprint of the vapor clouds for an LNG spill into the truck loading trenches, with wind at 1 m/s from several directions. Figure 14. Footprint of the vapor clouds for an LNG spill into the truck loading trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 18 of 26 Figure 15. Footprint of the vapor clouds for an LNG spill into the header pipe trenches, with wind at 1 m/s from several directions. Figure 16. Footprint of the vapor clouds for an LNG spill into the header pipe trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 19 of 26 Figure 17. Footprint of the vapor clouds for an LNG spill into the rundown line trenches, with wind at 1 m/s from several directions. Figure 18. Footprint of the vapor clouds for an LNG spill into the rundown line trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 20 of 26 Figure 19. Footprint of the vapor clouds for an LNG spill into the HYLEBOS piperack (facility side) trenches, with wind at 1 m/s from several directions. Figure 20. Footprint of the vapor clouds for an LNG spill into the HYLEBOS piperack (facility side) trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 21 of 26 Figure 21. Footprint of the vapor clouds for an LNG spill into the HYLEBOS piperack (HYLEBOS dock side) trenches, with wind at 1 m/s from several directions. Figure 22. Footprint of the vapor clouds for an LNG spill into the HYLEBOS piperack (HYLEBOS dock side) trenches, with wind at 2 m/s from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 22 of 26 Figure 23. Footprint of the vapor clouds for an LNG spill into the HYLEBOS dock trenches, with wind at 1 m/s from several directions. Figure 24. Footprint of the vapor clouds for an LNG spill into the HYLEBOS dock trenches, with wind at 2 m/s from several directions. As the plots in Figure 7 through Figure 24 indicate, the vapor clouds from LNG spills remain within the property boundaries. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 23 of 26 Tacoma LNG – Dispersion Modeling Project Report 3.2 Vapor Jet Releases Federal regulations (49 CFR §193.2051 and §193.2059) require the analysis of the vapor dispersion hazards from the accidental release of flammable fluids (in this case, natural gas) to determine the potential offsite impacts. Regulations specify that provisions must be made to minimize the possibility of a flammable mixture of vapors from a specified release reaching a property line that can be built upon and that would result in a distinct hazard. The calculations presented in this report consider the ½-LFL concentration as the threshold for the flammable vapor clouds. 3.2.1 Accidental Single Leakage Source A screening analysis of potential accidental single leakage source scenarios was performed by Chicago Bridge & Iron; the scenario specified in Table 5 was determined to require FLACS modelling. Table 5. Single accidental leak scenarios. Scenario ID Location Fluid Pressure [psia] Temp. [oF] Hole Size [in.] Leak Flow Rate [kg/s] Elevation [ft] Liquid Rainout [%] NG-10 Sendout pipe NG 40.6 64.6 10.0 20.1 3 0 3.2.2 Vapor Dispersion Simulations The vapor dispersion hazard distances for the vapour jet release discussed in the previous section were performed using FLACS, version 9.1, and the 3D geometry model of the Tacoma LNG facility shown in Figure 2. Table 6 lists the simulations performed for the flashing jet scenario in Table 5, to evaluate sensitivity to both wind speed and direction (note that wind direction indicates where the wind is coming from). All simulations assumed a constant release rate for a duration of 10 minutes; the release was initiated after 30 seconds to allow the wind profile to stabilize (due to the presence of terrain features, buildings and other obstructions). In all simulations, the base grid spacing in the horizontal direction was set to 5 m. Grid refinement was applied to the expanded jet (approximately 1 m in the directions perpendicular to the release). Horizontal grid stretching was performed outside the facility boundaries (in the direction of interest for cloud dispersion) and away from the release (in the crosswind and upwind direction). The vertical grid resolution was set to approximately 1 m between the ground and the release (expanded jet) and stretched upwards to the domain ceiling. All grid stretching and transitions were performed in compliance with FLACS modeling guidelines and consistent with the FLACS validation work. Table 6. Vapor dispersion simulations for scenario NG-10 from the sendout pipe line. Run # Fluid Release Location Release Direction Wind speed [m/s] Wind From 200411 200417 200418 200421 200427 200428 NG NG NG NG NG NG Sendout pipe Sendout pipe Sendout pipe Sendout pipe Sendout pipe Sendout pipe S S S S S S 1 1 1 2 2 2 NE NW N NE NW N The results of the FLACS vapor dispersion simulations for the releases listed in Table 6 are shown in Figure 25 and Figure 26. Each cloud is shown as the overlay of the vapor cloud footprint at each output time step. Note that most plots represent the overlay of several simulations – with different wind The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 24 of 26 directions but same wind speed and release direction – as indicated in their respective figure captions. The approximate release location is indicated by the base of a red arrow, which points in the direction of the release; the vapor barrier is identified by a red line. Figure 25. Vapor cloud (at ½-LFL concentration) for a release of NG from the sendout pipe (release identified by a red arrow, vapor barrier identified by a red line). Dispersion in 1 m/s wind from several directions. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 25 of 26 Figure 26. Vapor cloud (at ½-LFL concentration) for a release of NG from the sendout pipe (release identified by a red arrow, vapor barrier identified by a red line). Dispersion in 2 m/s wind from several directions. As the plots in Figure 25 and Figure 26 indicate, the vapor clouds from a NG vapor release do not extend across a property line that may be built upon. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) Tacoma LNG – Dispersion Modeling Project Report 4 Ref. No.: GexCon-15-P515018-R-1 Rev.: 00 Date: 7/16/2015 Page 26 of 26 Conclusions GexCon US, Inc. (GexCon) was contacted by Chicago Bridge & Iron (CB&I) to perform a hazard analysis for the Tacoma LNG facility to be located on the port of Tacoma, Washington. This report presents the results of the following hazard analyses:   Flammable vapor dispersion exclusion zones for design LNG spills into the liquefaction facility trenches and sumps; Flammable vapor dispersion exclusion zones for a single NG vapor release within the facility. The vapor dispersion simulations were performed using GexCon’s CFD modeling software FLACS, version 9.1. FLACS was approved by the U.S. DOT as an alternate model for vapor dispersion under 49 CFR 193.2059 on October 7, 2011. The results of the hazard analysis presented in this report are as follows:   The footprint of the vapor dispersion cloud (to ½-LFL) for the design LNG spills remains within the property boundaries; The footprint of the vapor dispersion cloud (to ½-LFL) for a single NG vapor release does not extend across a property line that may be built upon. The information contained in this report is to be used by the recipient solely for the purpose of which it was supplied. It shall not be disclosed in whole or in part, to or by any other party without the written permission of GexCon US. (www.gexconus.com) TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX K – PHAST ANALYSIS RESULTS FOR VAPOR PORTION OF LNG RELEASES: VAPOR DISPERSION PLOTS El Maximum Concentration Footprint Auoit Datefl'ime: 6.123a'2015 Audit Number: 5303: Averaging Time: Flammable (15.75 s} FTH -T HE SHIP 3- Equipment: Case 1 [item 13?} - Discharge Ftate - 3.33? Height of Interest: ft Material: Case 1 Composition Program: Scenario: Vapor Component iCIInlg.r Weather: Category Wino Direction: deg Workspace: Ca se Relieving Ftates El Weather [23 Category 4.5.lF H.025 fraction (Effect Zone} n; Category +er ooze fraction [23 1' Equipment [23 SFIP FIIHZ Lue liZEIi'rlth HI .5. i'l'?ll'itll'?l'i' Display Order Groups I 13.01] 0.112 mile 231 i 5?1 It?l-Li TITE ..l~iliF [16 CASE 1: Flashing Vapor Release from Leak in TOTE LNG Bunkering Line on Dock CASES 2 & 3: Flashing Vapor Release from Leak in TOTE LNG Bunkering Line Near Facility Transition Pit CASE 4: Flashing Vapor Release from Leak in Truck LNG Loading Line Near Truck Loading Station NOTE: Due to small size of vapor cloud, GIS Plot does adequately display results. Graph above shows cloud flammable concentration versus downwind distance. Audit Date?'lme: 6.234201 5 AM Aeitiwl b:5a1tl ?umer I Lair-ant SEHDUUT PIT Averaging Time: Flammable BIS s} I 1"?1 Maximum Ceneentratian Fantprint a.th Equipment: Case 5 [item 10?} Discharge Ftate 3.3- mile Exjsr:Display Order! Grqu I I I (Jr-f I II Height af Interest: ft 1? Material: Case 1 Cnmpasitian - - - - - - - . q. if.? Pra rarn: Phast 2:2: i=1: Scenario: V?par Cumpanent Only I .. i ?ll: Hill: Weather: Categeryd?JF A: Win11 DirectianCase Relieving Rates ?31[it Weather I I i t3 Categurwzair [a 0.025 fraction [Effect Zane} ?in El It: 1 Category 4.5.i'F lg 0325 fraetian I Equipment I. 'r'nl??H I x?hr? I 6 I enteretrain] . I a. If CASE 5: Flashing Vapor Release from Leak in LNG Sendout Header near Main Pipe Rack Maximum Concentration Footprint Audit Datei'Time: acmoi 5 AM Audit Number: 5310 Averaging Time: Flammable 5} Height of Interest: ft Material: Case 1 Composition Program: F'hast FISH Scenario: 1o'apor Component CInly Weather: Category Wind Direction: deg Workspace: Case Relieving Hates Weather CategoryrlEJF l?l H.025 fraction [Effect zone} Category 0.025 fraction [Ci I- Elli: Equipment ?r i Equipment: Case 6 [item 25} Discharge Flate 3.0" K. i IMi?t- -32ll3 'iTll'll Display Clrder ,iilt?lIl-lill-ll I- l- ?4 loll .ul TS l; F-qg-nrmirrn rename CASE 6: Flashing Vapor Release from Leak in LNG Rundown Line in Liquefaction Area aaza Maximum Caneentratian Fantprint PIPE miIE Audit Date?ime: 6.232015 a:ar:2n AM Audit Number: 5310 Averaging Time: Flammable (13.?5 a} a II I Equipment: Case (item 113}- Discharge Hate - 3"Height at Interest?lm; I I I. I Material: Caeei Cnmpaeitinn r' I II Pregram: Phaet .. ,ttitilialo Seenarie: Uapnr I "t1 ti i 1 Weather: Categery I i I i in: till . *nfl I I - I Wind Directien: a deg '34 it Werkapaee: Case Relieving Flatea i?v. El Weather fl. a . . I, f, Categery4.5.I'F H.025 traetlen (Effeetznne} I I 14"; I a? :r a Categery 4.5.tF H.025 fraction I Equipment [23 JHTS 1? 33- It urch run Displayumeri Groups I CASES 7 8: Flashing Vapor Release from Leak in Hylebos LNG Loading Line Near Main Pipe Rack 4.3 1g ooze El Maximum Concentration Footprint Audit Date?'lme: 623.2015 Audit Number: 5310 Averaging Time: Flammable (13.?5 s} Equipment: Case 9 (item 113}- Discharge Rate - 3"Egui'l Height of Interest: ft Material: Casel Composition 3T WE ProgramScenario: 1o?apor Component Only I Weather: Category . Wind DirectionWorkspace: Case Relieving Rates 1 Weather Rg Category ELIJEE fraction [Effect zone} Him I Category 4.5m rm ooza fraction [.13 I Equipment Ell: .rt .- I- mk?ei? FLAHEEH cc? ?or a ?r in a Display magi Group: ,9 Lioizrnti l?il LJHITS an 1? 1? CASE 9: Flashing Vapor Release from Leak in Hylebos LNG Loading Line Near Hylebos Dock TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX L – VAPOR CLOUD EXPLOSION CALCULATIONS AND PHAST ANALYSIS PLOTS TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C Phast Flammable Cloud & Confined Space Figures AREA 1 AREA 2 MRL Condenser Vessel V-204: 0.4” Leak Vapor Cloud Maximum Concentration Footprint at LFL Audit Number Audit Datefl'ime Averaging Time Equipment Material Offset Distance Program Scenario Time (Categmy Weather Workspace 10781 3 51912015 1:17:11 PM Flammable (18.75 5) MR Separator MRI. - #49 Comp 0 ft Phast 7.01 0.4" Leak 37.4723 5 Category liquefier vce Side View 0.4" Leak Category 0.0172132 fraction Category 0.10812? fraction 4 Cloud Height [ft] 0 20 40 60 80 Distance Downwind [ft] 120 140 MRL Condenser Vessel V-204: 0.4? Leak Vapor Cloud Height at LFL TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C Stoichiometric Ratio and Confined Space Flammable Mass Calculations Calculation to Determine Fuel Reactivity for MRL Leak Calculate Mixture Laminar Flame Velocity Mole Frac. Stream 1 for Line MRL-11032 methane ethylene propane i-pentane nitrogen xi 0.0779 0.2377 0.2374 0.4330 0.0140 mixture laminar flame velocity (LFV) Flame Speed 2 cm/s V Bi 40 80 46 46 0 51.30 cm/s Determine Fuel Reactivity 4 Fuel Reactivities vs. Laminar Flame Velocity cm/s High Reactivity LFV ≥ Medium Reactivity 75 > LFV > Low Reactivity 45 ≥ LFV Fuel Reactivity = 1 3 ⋯ cm/s 75 45 Medium References 1 Composition data from Stream 49 of Design Unisim model 2 NFPA 68, 2012 ed., Annex D 3 Calculation from Eqn. 6.28 of: "Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE and Flash Fire Hazards", 2nd ed. 4 per Baker 1997, Pierorazio 2004 OFFICE SUBJECT Tacoma LNG Tacoma, WA REVISION A CHKD BY MADE BY CHKD BY DATE DATE DATE PSE Vapor Cloud Explosion Analysis - V-204 MADE BY REFERENCE NO. 186512 GCB DATE 03-Jun-15 PAGE 1 of 3 Calculation to Determine Explosion Mass for MRL Leak Determine Stoichiometric Concentration of Fuel Required for Combustion in Air Basis: One (1) Mole of i-Pentane in MRL Fuel C H N O Mol. Wt. 12.011 1.008 14.007 16 lb/lbmol 1 4 16.0430 2 4 28.0540 3 8 44.0970 5 12 72.1510 2 28.0140 0 0 Number of Atoms in MRL Composition per Constituent Total Number of Moles per Atom C H N 0.18 0.72 0.00 1.10 2.20 0.00 1.65 4.39 0.00 5.00 12.00 0.00 0.00 0.00 0.06 Moles 0.180 0.549 0.548 1.000 0.032 1.0000 2.309 50.0213 lb/lbmol C H N 2 Air Mole Frac nitrogen 0.78992 oxygen 0.21008 Oxygen Coefficient Moles of N2 + O2 Moles 3.760 1.000 12.749 60.68 Total Moles of Fuel-Air Stoichiometric Concentration 62.992 0.037 O 2 Number of Atoms in Air per Constituent Reactant Coefficients MRL Comp. Mole Frac methane 0.0779 ethylene 0.2377 propane 0.2374 i-pentane 0.4330 nitrogen 0.0140 MRL Fuel Moles of Fuel Fuel Mole Weight MRL Fuel along with Oxygen are the Reactants MRL 7.92 19.30 0.06 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 95.87 0.00 0.00 0.00 0.00 25.50 Moles of Oxygen Required for Complete Combustion 0.00 0.00 95.87 25.50 Nitrogen is Assumed to be Inert C 1 H N 2 O 2 1 2 Number of Atoms in Combustion Products per Molecule 7.92 STOICHIOMETRIC COMBUSTION Products Product Coefficients Carbon Dioxide 7.922933 Water 9.651166 Nitrogen 47.96665 19.30 95.93 7.92 25.50 15.85 9.65 19.30 95.93 7.92 19.30 95.93 25.50 0.00 0.00 0.00 0.00 Products for Complete Combustion Reaction Balance Check 1 ( 0.18CH4 + 0.55C2H4 + 0.55C3H8 + 1C5H12 + 0.03N2) + SUBJECT Vapor Cloud Explosion Analysis - V-204 Tacoma LNG Tacoma, WA 12.75 ( O2 + 3.76N2) ==> MADE BY 7.92CO2 + 9.65H2O + 47.97N2 OFFICE PSE REVISION A CHKD BY MADE BY CHKD BY DATE DATE DATE REFERENCE NO. 186512 GCB DATE 09-Jun-15 PAGE 2 of 3 Calculation to Determine Explosion Mass for MRL Leak Determine Mass of Fuel Contained in Congested Areas Pressure 14.7 psia design ambient condition Temperature 50.9 °F design ambient condition 3 Universal Gas Const. 10.73159 ft -psi/lbmol-R Stoichiometric Concentration 3.7% % vol fuel Fuel Molar Weight 50.02 lb/lbmol Area #1 Area #2 Total Congested Plan Area Total Congested Area Cloud Height Total Congested Volume Fuel Volume Fuel Moles in Congested Volume Vapor Cloud Fuel Mass 768 4.75 3648 133.7 0.36 17.9 ft^2 ft ft^3 ft^3 lbmol lbs Total Congested Plan Area Total Congested Area Cloud Height Total Congested Volume Fuel Volume Fuel Moles in Congested Volume Vapor Cloud Fuel Mass 696 3 2088 76.6 0.21 10.3 ft^2 ft ft^3 ft^3 lbmol lbs SUBJECT Vapor Cloud Explosion Analysis - V-204 Tacoma LNG Tacoma, WA liquefaction tower plan area based on V-204 0.4" leak vapor cloud results In Liquefaction Tower area adjacent to compressor building based on V-204 0.4" leak vapor cloud results Adjacent to Compressor Building MADE BY OFFICE PSE REVISION A CHKD BY MADE BY CHKD BY DATE DATE DATE REFERENCE NO. 186512 GCB DATE 22-Jun-15 PAGE 3 of 3 TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C Phast Vapor Cloud Explosion Overpressure Plots if. Eartyr Exp-Ia aian Dverpreaaure Radii PH: mF r: fur-EUU- was ?t Audit Number: 1 area - a? Equipment: Lique?er - 4 Material: i.iaL #49 a Camp Pro gram: Phaat FJZH 3" t, Scenario: Baker?Strehlaw-Tang explosion i i *k?E/e Rail all Weather: CategoryiEJF 3 i *i i .5 "i Wind Direction: 0 deg -- .i FL I113 i Workspace: lique?er 1.ri:e ix El 1i'Ii'eatl'ier ff; Category 3 psi 1 1 Category 4.5iF 2 psi r' ?Il-IlCategoryiEi?F?l psi I Equipment :iiLii-i Let's. all "t E. [111:1 I I i i ?I'l ?3 II a ail-J": ll +1 xx?. Li_i Display Order! Graug? I IE I. i' Area 1: Vapor Cloud Explosion Overpressure Plot Early Explosion Ratlii Audit l-lumber: Equipment: VICE Comp Material: #49 HQ Comp Program: Phaet Weather: Illategorz.r Wind Direction: deg Workepaee: lique?er 1.ree Weather [g Category ear 3 psi Category 4.5JF 2 psi Category earl pal Ellie Equipment k: Audit Date-Time: 5232M 5 Seen ario: ker?Strehlo w?Tang explosion (g no .I l-e?x?e?a . 1:3?1; aid-5?Inna I II I lean mile TrruiDieglay?rder Groups a: FHDFEHTT Area 2: Vapor Cloud Explosion Overpressure Plot TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C APPENDIX M – CLIMATE DATA     TACOMA LNG SITING STUDY REPORT DOCUMENT NO.: 186512-000-SE-RP-00001 REVISION: C Radiation and Vapor Dispersion Analysis Weather Data Weather conditions at Tacoma/McChord Air Force Base, Washington were chosen to be representative of the weather conditions at the Tacoma LNG facility site in the Port of Tacoma. McChord AFB is approximately 11 miles southwest of the site, which is the closest weather station for which ASHRAE data has been compiled. ASHRAE weather station data sheets provide a complete and reliable set of climatic data for use in engineering design. The data sheet for Tacoma/McChord AFB was published in the 2013 edition of the ASHRAE Fundamentals Handbook. Radiation Calculations Section 193.2057.(b) of 49 CFR Part 193 states, "In calculating exclusion distances, the wind speed producing the maximum exclusion distances shall be used except for wind speeds that occur less than 5% of the time based on recorded data for the area." From the Tacoma/McChord AFB data sheet, the extreme annual wind speed which is not exceeded more than 5% of the time = 15.6 mph maximum wind velocity. Section 193.2057.(c) of 49 CFR Part 193 states, "The ambient temperature and relative humidity that produce the maximum exclusion distances shall be used except for values that occur less than 5% of the time based on recorded data for the area." For radiation calculations, lower ambient temperatures and lower relative humidity produces maximum exclusion distances. From the Tacoma/McChord AFB data sheet, the coldest average monthly temperature occurred in December and was 38.8°F. The 5% Dry Bulb Mean Daily Temperature Range was 13.7°F. Subtracting half of the range from the average produces a temperature of 31.95°F. This provides a conservative estimate of the temperature not exceeded more than 5% of the time annually, as only data from the coldest average month is considered. The relative humidity is determined by averaging the relatively humidity values derived from the 5% Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures. The following will be used for radiation calculations: Wind speed = 15.6 mph, maximum Relative Humidity = 54.7% Ambient temperature = 31.95°F Vapor Dispersion Calculations Section 193.2058.(b).(2) of 49 CFR Part 193 states, "Dispersion conditions are a combination of those which result in longer predicted downwind dispersion distances than other weather conditions at the site at least 90% of the time, based on figures maintained by National Weather Service of the U.S. Department of Commerce, or as an alternative where the model used gives longer distances at lower wind speeds, Atmospheric Stability (Pasquill Class) F, wind speed = 4.5 mph (2.01 m/s) at reference height of 10m, relative humidity = 50% and atmospheric temperature = average in the region." From the Tacoma/McChord AFB data sheet, the annual average dry bulb temperature is 50.9°F. The model being used results in longer distances at lower wind speeds. The following will be used for vapor dispersion calculations: Atmospheric Stability = Pasquill Class F Wind Speed = 4.5 mph (2.01 m/s) at reference height of 10m Relative Humidity = 50% Atmospheric Temperature = 50.9°F 2013 ASHRAE Handbook - Fundamentals (IP) © 2013 ASHRAE, Inc. TACOMA/MC CHORD AFB, WA, USA Lat: 47.15N Long: 122.48W 285 Elev: StdP: 14.54 WMO#: 742060 Time Zone: -8 (NAP) Period: 00-09 WBAN: 99999 Annual Heating and Humidification Design Conditions Coldest Month (1) Heating DB Humidification DP/MCDB and HR 99.6% 99% HR MCDB DP HR MCDB Coldest month WS/MCDB 0.4% 1% WS MCDB WS MCDB MCWS/PCWD to 99.6% DB MCWS PCWD 99.6% 99% DP (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) 12 21.3 25.0 13.6 11.1 26.9 19.0 14.4 29.1 26.4 46.7 23.5 44.7 2.0 160 (1) Annual Cooling, Dehumidification, and Enthalpy Design Conditions (2) (3) Hottest Month DB Range DB DB MCWB (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) 7 23.4 86.3 64.4 82.2 63.2 79.2 61.9 66.2 82.7 64.4 79.2 63.0 76.3 7.6 20 MCDB Hours 8 to 4 & 55/69 0.4% MCWB Cooling DB/MCWB 1% DB MCWB Dehumidification DP/MCDB and HR 1% DP HR MCDB DP 0.4% HR MCDB (a) (b) (c) (d) (e) 60.8 80.3 69.3 58.9 75.0 Extreme Max WB Min 2% 0.4% WB MCDB Evaporation WB/MCDB 1% WB MCDB MCWS/PCWD to 0.4% DB MCWS PCWD Hottest Month 2% WB Enthalpy/MCDB 1% Enth MCDB MCDB 2% (p) DP 2% HR MCDB Enth (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) 68.2 57.2 70.4 67.0 30.9 83.3 29.5 79.2 28.5 76.5 1125 0.4% MCDB Enth (2) (3) Extreme Annual Design Conditions Extreme Annual WS 1% (4) 2.5% 5% Mean Extreme Annual DB Standard deviation Max Min Max n=5 years Min Max n-Year Return Period Values of Extreme DB n=10 years n=20 years Min Max Min Max n=50 years Min Max (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) 20.3 17.7 15.6 73.0 14.9 94.1 4.1 4.5 12.0 97.3 9.6 100.0 7.3 102.5 4.3 105.8 Annual Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) 50.9 1473 5288 1784 123 2211 669 39.7 6.20 324 785 4 0 0 0 40.8 4.34 258 678 0 0 0 0 44.3 4.79 186 641 11 0 0 0 48.2 4.85 91 503 38 0 13 1 54.7 5.28 14 321 161 3 110 28 60.1 5.07 0 165 302 18 385 124 65.3 4.87 0 53 474 62 923 320 64.1 3.76 0 63 437 34 599 158 58.9 4.38 1 190 266 6 179 38 50.9 5.08 49 438 77 0 2 0 43.7 5.89 201 639 12 0 0 0 38.8 6.13 349 812 2 0 0 0 39.8 47.7 28.9 5.0 6.4 11.1 1.3 2.5 4.0 9.5 1.3 2.2 3.6 6.5 0.5 1.5 2.8 5.0 1.0 1.1 1.7 4.2 0.7 0.9 1.5 3.4 0.2 1.0 0.8 2.1 0.1 0.7 1.0 4.2 0.0 1.4 1.8 5.4 0.4 1.4 4.0 7.4 0.5 1.8 6.2 10.8 1.1 2.6 6.1 10.6 2.3 2.3 (13) DB 58.7 54.9 54.6 51.5 51.9 49.7 48.5 46.5 59.0 48.0 54.7 46.9 52.1 45.9 49.6 44.9 66.5 55.3 61.1 51.0 56.8 48.8 54.1 47.4 75.1 56.9 68.2 54.2 63.4 51.8 59.3 49.5 83.9 61.8 76.7 59.5 71.8 57.4 66.2 55.4 88.7 63.6 83.8 62.4 78.8 60.8 72.7 58.8 94.8 68.6 87.7 66.1 82.3 64.2 79.0 62.4 89.5 66.4 84.1 63.7 81.0 62.9 76.9 61.4 84.5 63.0 79.0 61.7 74.8 59.9 71.7 59.1 72.3 57.5 66.4 57.3 63.5 55.2 60.7 54.4 61.3 56.1 57.3 52.8 55.0 50.9 53.7 49.9 57.2 53.9 52.4 49.4 50.0 47.3 47.7 45.4 (17) 55.6 58.7 52.5 53.7 49.3 50.6 46.5 48.0 51.4 55.3 48.6 51.7 46.6 49.6 45.7 48.4 56.5 65.0 52.9 58.4 50.3 55.0 48.0 52.7 58.1 72.1 55.4 65.7 53.0 60.5 51.0 58.0 63.6 80.5 60.2 73.3 58.3 68.8 56.4 65.1 66.0 84.6 63.2 80.0 61.5 76.6 59.6 71.8 70.9 91.7 67.2 84.9 65.4 80.8 63.5 76.6 68.1 84.7 65.2 80.9 63.6 77.7 62.3 74.7 64.5 79.6 62.5 75.5 61.4 73.1 59.7 69.2 62.1 66.0 59.1 64.4 56.8 61.5 54.9 59.3 57.3 59.5 54.3 57.2 52.2 54.6 49.9 52.2 54.8 57.1 50.3 52.1 47.4 49.0 45.5 46.8 (25) 12.4 14.3 10.6 12.3 9.7 17.1 21.8 14.4 17.0 12.0 16.6 23.0 13.8 19.4 12.5 19.2 27.7 15.3 24.3 13.6 19.9 30.7 15.3 24.8 13.0 20.1 32.9 14.6 28.2 13.3 23.4 31.8 13.2 28.2 12.1 23.4 32.0 14.4 26.6 12.7 22.7 31.4 16.2 27.1 14.6 17.5 23.1 13.9 17.7 11.6 14.4 15.7 11.1 13.2 10.3 12.2 13.7 10.4 12.4 10.3 (33) 0.333 2.569 241 20 0.315 2.614 275 22 0.323 2.540 288 28 0.331 2.471 294 32 0.331 2.447 296 34 0.324 2.464 297 34 0.319 2.511 298 32 0.325 2.546 292 30 0.342 2.520 277 28 0.339 2.546 260 24 0.323 2.622 245 18 0.317 2.614 235 17 (38) (4) Monthly Climatic Design Conditions (5) Tavg (6) Sd (7) (8) (9) (10) Temperatures, Degree-Days and Degree-Hours HDD50 HDD65 CDD50 CDD65 (11) CDH74 (12) CDH80 (13) PrecAvg (14) (15) Precipitation (17) (19) (20) (21) (22) (23) PrecMin PrecSD (16) (18) PrecMax 0.4% Monthly Design Dry Bulb and Mean Coincident Wet Bulb Temperatures MCWB DB 2% MCWB DB 5% MCWB 10% DB (24) MCWB (25) WB (26) (27) (28) (29) (30) (31) 0.4% Monthly Design Wet Bulb and Mean Coincident Dry Bulb Temperatures MCDB WB 2% MCDB WB 5% MCDB WB 10% (32) MCDB (33) MDBR (34) (35) (36) Mean Daily Temperature Range 5% WB (37) (40) MCWBR MCDBR MCWBR taub (38) (39) 5% DB MCDBR Clear Sky Solar Irradiance taud Ebn,noon Edh,noon (41) Nomenclature: See separate page (5) (6) (7) (8) (9) (10) (11) (12) (14) (15) (16) (18) (19) (20) (21) (22) (23) (24) (26) (27) (28) (29) (30) (31) (32) (34) (35) (36) (37) (39) (40) (41)